diff --git a/.gitignore b/.gitignore index 074bcf75dbbcc52990cd3c1794cf3e7212377ca1..2cc8faedb7810a92e2e471e93f63c0085f9ef84b 100644 --- a/.gitignore +++ b/.gitignore @@ -1,7 +1,10 @@ *.DS_Store +*~ *.exe *.dat *.asv *.f -*.json *.fig +datcom +dissileMatcom +Icon \ No newline at end of file diff --git a/functions/utilities/exportStandardizedFigure/settings/settings_default.json b/functions/utilities/exportStandardizedFigure/settings/settings_default.json new file mode 100644 index 0000000000000000000000000000000000000000..ba44caea8b9562cf3d19da9dfcadf43860992ae5 --- /dev/null +++ b/functions/utilities/exportStandardizedFigure/settings/settings_default.json @@ -0,0 +1,15 @@ +{ + "addMarkers": true, + "changeColors": true, + "changeLineStyle": false, + "gridOption": true, + "satelliteMapColors": false, + "legendLocation": "southoutside", + "legendOrientation": "horizontal", + "exportPDF": true, + "exportFIG": false, + "overwriteFigure": false, + "percTextwidth": 0.75, + "forcedMarkers": 0, + "WHratio": 0 +} \ No newline at end of file diff --git a/functions/utilities/exportStandardizedFigure/settings/settings_geoplots.json b/functions/utilities/exportStandardizedFigure/settings/settings_geoplots.json new file mode 100644 index 0000000000000000000000000000000000000000..6fd6d6611f57bb6625c867911e63ee6e5aca460b --- /dev/null +++ b/functions/utilities/exportStandardizedFigure/settings/settings_geoplots.json @@ -0,0 +1,15 @@ +{ + "addMarkers": false, + "changeColors": true, + "changeLineStyle": false, + "gridOption": false, + "satelliteMapColors": true, + "legendLocation": "southoutside", + "legendOrientation": "horizontal", + "exportPDF": true, + "exportFIG": false, + "overwriteFigure": false, + "percTextwidth": 0.75, + "forcedMarkers": 0, + "WHratio": 0 +} \ No newline at end of file diff --git a/functions/utilities/exportStandardizedFigure/settings/settings_prova.json b/functions/utilities/exportStandardizedFigure/settings/settings_prova.json new file mode 100644 index 0000000000000000000000000000000000000000..ba44caea8b9562cf3d19da9dfcadf43860992ae5 --- /dev/null +++ b/functions/utilities/exportStandardizedFigure/settings/settings_prova.json @@ -0,0 +1,15 @@ +{ + "addMarkers": true, + "changeColors": true, + "changeLineStyle": false, + "gridOption": true, + "satelliteMapColors": false, + "legendLocation": "southoutside", + "legendOrientation": "horizontal", + "exportPDF": true, + "exportFIG": false, + "overwriteFigure": false, + "percTextwidth": 0.75, + "forcedMarkers": 0, + "WHratio": 0 +} \ No newline at end of file diff --git a/utilities/forecastAnalysis/storical/.cache/cache.sqlite b/utilities/forecastAnalysis/storical/.cache/cache.sqlite new file mode 100644 index 0000000000000000000000000000000000000000..af742f576702216b65d15fbb0ec356fa873478f9 Binary files /dev/null and b/utilities/forecastAnalysis/storical/.cache/cache.sqlite differ diff --git a/utilities/forecastAnalysis/storical/.output/2023_backup.json b/utilities/forecastAnalysis/storical/.output/2023_backup.json new file mode 100644 index 0000000000000000000000000000000000000000..82bec964a1417eb6332a142a78f8c323f45094d9 --- /dev/null +++ b/utilities/forecastAnalysis/storical/.output/2023_backup.json @@ -0,0 +1,451 @@ +{ + "latitude": 41.79261779785156, + "longitude": 14.086956024169922, + "elevation": 1411.0, + "utc_offset_seconds": 7200, + "timezone": "Europe/Rome", + "timezone_abbreviation": "GMT+2", + "hourly": { + "start_time": 1726005600, + "end_time": 1726524000, + "interval": 3600, + "wind_speed_10m": [ + 2.6248810291290283, + 2.6907248497009277, + 2.5495097637176514, + 2.280350923538208, + 2.0808651447296143, + 1.780449390411377, + 1.5, + 1.3601471185684204, + 1.6401219367980957, + 0.5, + 0.5830951929092407, + 1.0295629501342773, + 1.392838716506958, + 1.2369316816329956, + 2.109502077102661, + 2.41867733001709, + 2.3769729137420654, + 2.630589008331299, + 2.5179357528686523, + 1.552417516708374, + 1.2727922201156616, + 1.1180340051651, + 1.216552495956421, + 1.3038403987884521, + 1.2999999523162842, + 1.3038403987884521, + 1.5033296346664429, + 1.4142135381698608, + 1.7029386758804321, + 1.8110769987106323, + 1.8110769987106323, + 1.600000023841858, + 1.9697715044021606, + 2.4083189964294434, + 3.3241541385650635, + 4.244997024536133, + 4.738142967224121, + 3.982461452484131, + 3.551056146621704, + 3.8078866004943848, + 3.1384711265563965, + 3.4176015853881836, + 2.8460500240325928, + 2.785677433013916, + 2.0, + 2.2022716999053955, + 2.302172899246216, + 2.3537204265594482, + 1.4764822721481323, + 2.8999998569488525, + 2.5612497329711914, + 1.7000000476837158, + 1.6124515533447266, + 1.6401219367980957, + 1.5620499849319458, + 0.7211102843284607, + 1.1661903858184814, + 2.1954498291015625, + 2.523885726928711, + 2.915475845336914, + 3.041381359100342, + 3.6400551795959473, + 3.4828150272369385, + 2.773084878921509, + 2.5999999046325684, + 2.5, + 0.7280109524726868, + 1.0049875974655151, + 1.5033296346664429, + 2.109502077102661, + 2.435159206390381, + 2.3430747985839844, + 2.2022714614868164, + 2.1213202476501465, + 2.5495097637176514, + 1.9104971885681152, + 2.051828384399414, + 1.9723082780838013, + 1.886796236038208, + 1.8601075410842896, + 2.420743703842163, + 1.5620499849319458, + 2.2022714614868164, + 3.1622774600982666, + 3.106444835662842, + 2.720294237136841, + 3.0016660690307617, + 1.2041594982147217, + 0.8246211409568787, + 1.552417516708374, + 0.6403124332427979, + 0.8944272398948669, + 1.0770329236984253, + 1.3601471185684204, + 1.3000000715255737, + 1.392838716506958, + 1.3601471185684204, + 1.7691805362701416, + 2.262741804122925, + 1.4866068363189697, + 1.2529964447021484, + 1.7691805362701416, + 2.404163122177124, + 2.9732136726379395, + 3.1622774600982666, + 2.475883722305298, + 1.886796236038208, + 1.392838716506958, + 1.334166407585144, + 2.0024983882904053, + 1.9416487216949463, + 0.7071067690849304, + 1.4317821264266968, + 1.8248286247253418, + 1.7888544797897339, + 1.0049875974655151, + 0.6324555277824402, + 0.8246211409568787, + 1.1045360565185547, + 1.0295629501342773, + 1.2041594982147217, + 1.4866068363189697, + 1.6970562934875488, + 1.0816653966903687, + 0.6324555277824402, + 0.6082762479782104, + 1.0440306663513184, + 0.800000011920929, + 1.0295629501342773, + 1.2206555604934692, + 1.0630146265029907, + 1.1180340051651, + 1.0, + 1.0630146265029907, + 1.2649110555648804, + 1.0295629501342773, + 0.9486832618713379, + 1.2369316816329956, + 1.2806248664855957, + 1.0630146265029907, + 0.7810249924659729, + 0.7810249924659729, + 1.0630146265029907, + 1.140175461769104 + ], + "wind_direction_10m": [ + 310.36444091796875, + 311.98712158203125, + 311.820068359375, + 307.8750305175781, + 305.2176818847656, + 308.1572570800781, + 306.8699645996094, + 306.0274658203125, + 307.56866455078125, + 360.0, + 120.96369171142578, + 150.94549560546875, + 158.96241760253906, + 165.96372985839844, + 174.55975341796875, + 187.1249237060547, + 165.37908935546875, + 171.25392150878906, + 186.84268188476562, + 194.9314727783203, + 224.99989318847656, + 243.4350128173828, + 260.5377502441406, + 265.60137939453125, + 270.0, + 274.39862060546875, + 273.8139953613281, + 278.1300048828125, + 273.36639404296875, + 276.340087890625, + 276.340087890625, + 270.0, + 246.03750610351562, + 228.36654663085938, + 223.7812042236328, + 226.9091339111328, + 225.85501098632812, + 218.88450622558594, + 212.347412109375, + 203.1986083984375, + 202.47947692871094, + 200.55612182617188, + 198.43504333496094, + 201.03758239746094, + 180.0, + 177.39749145507812, + 182.489501953125, + 192.26475524902344, + 208.3006591796875, + 226.39710998535156, + 231.3401641845703, + 241.9276123046875, + 240.2552032470703, + 232.43133544921875, + 219.80552673339844, + 236.30990600585938, + 210.96368408203125, + 210.06849670410156, + 213.69009399414062, + 210.96368408203125, + 226.3321533203125, + 217.18478393554688, + 230.82635498046875, + 244.35903930664062, + 270.0, + 270.0, + 254.05453491210938, + 5.710507392883301, + 356.1860046386719, + 354.55975341796875, + 340.8208923339844, + 320.1944885253906, + 320.5275573730469, + 315.0000915527344, + 311.820068359375, + 312.87890625, + 313.02508544921875, + 300.4654541015625, + 302.0053405761719, + 306.2539367675781, + 308.2901916503906, + 320.1944885253906, + 320.5275573730469, + 325.3047790527344, + 326.82147216796875, + 323.9725341796875, + 330.0184326171875, + 311.6334533691406, + 284.0362548828125, + 345.06854248046875, + 38.659828186035156, + 63.43501281738281, + 338.1985168457031, + 306.0274658203125, + 292.6199035644531, + 291.0375671386719, + 306.0274658203125, + 317.2906188964844, + 315.0000915527344, + 317.72637939453125, + 298.6103515625, + 317.2906188964844, + 315.0000915527344, + 317.72637939453125, + 325.3047790527344, + 313.36346435546875, + 327.9946594238281, + 338.96240234375, + 347.00537109375, + 357.1376647949219, + 11.88864517211914, + 98.13002014160156, + 77.90525817871094, + 99.46224975585938, + 116.56498718261719, + 95.71050262451172, + 71.5649642944336, + 14.036274909973145, + 5.194349765777588, + 330.94549560546875, + 318.3665466308594, + 312.27362060546875, + 315.0000915527344, + 326.3099060058594, + 341.56494140625, + 350.5377502441406, + 16.699325561523438, + 360.0, + 29.054508209228516, + 34.99209976196289, + 41.18583679199219, + 63.43501281738281, + 126.86998748779297, + 138.81417846679688, + 198.43504333496094, + 150.94549560546875, + 161.56495666503906, + 165.96372985839844, + 141.3401641845703, + 131.18582153320312, + 50.19447326660156, + 39.80552673339844, + 41.18583679199219, + 52.12495803833008 + ], + "wind_gusts_10m": [ + 8.300000190734863, + 8.0, + 8.0, + 7.699999809265137, + 7.0, + 6.699999809265137, + 6.099999904632568, + 5.5, + 5.5, + 5.300000190734863, + 3.200000047683716, + 4.099999904632568, + 5.599999904632568, + 5.400000095367432, + 6.900000095367432, + 8.600000381469727, + 7.5, + 7.300000190734863, + 7.099999904632568, + 7.0, + 5.5, + 5.0, + 5.099999904632568, + 5.5, + 5.900000095367432, + 6.099999904632568, + 6.599999904632568, + 7.0, + 7.699999809265137, + 8.100000381469727, + 8.300000190734863, + 8.399999618530273, + 8.800000190734863, + 10.0, + 11.399999618530273, + 13.100000381469727, + 13.600000381469727, + 14.0, + 12.699999809265137, + 12.199999809265137, + 12.600000381469727, + 11.899999618530273, + 11.800000190734863, + 10.300000190734863, + 13.699999809265137, + 13.0, + 11.300000190734863, + 11.600000381469727, + 11.699999809265137, + 12.199999809265137, + 12.0, + 12.300000190734863, + 11.399999618530273, + 11.199999809265137, + 10.800000190734863, + 9.300000190734863, + 7.900000095367432, + 8.699999809265137, + 9.0, + 9.800000190734863, + 13.399999618530273, + 13.5, + 12.199999809265137, + 12.899999618530273, + 11.600000381469727, + 9.600000381469727, + 8.300000190734863, + 4.5, + 5.0, + 7.0, + 8.600000381469727, + 9.399999618530273, + 9.5, + 9.0, + 9.0, + 7.300000190734863, + 8.100000381469727, + 8.600000381469727, + 8.800000190734863, + 8.800000190734863, + 8.600000381469727, + 8.600000381469727, + 7.599999904632568, + 10.600000381469727, + 11.0, + 10.300000190734863, + 10.100000381469727, + 5.400000095367432, + 5.099999904632568, + 5.900000095367432, + 5.900000095367432, + 3.799999952316284, + 4.5, + 6.300000190734863, + 7.0, + 7.900000095367432, + 7.900000095367432, + 8.600000381469727, + 9.100000381469727, + 7.599999904632568, + 6.599999904632568, + 6.699999809265137, + 8.5, + 9.899999618530273, + 10.5, + 10.399999618530273, + 8.399999618530273, + 7.300000190734863, + 6.300000190734863, + 7.199999809265137, + 8.100000381469727, + 5.300000190734863, + 5.0, + 5.699999809265137, + 5.300000190734863, + 4.400000095367432, + 3.0, + 3.4000000953674316, + 4.699999809265137, + 4.800000190734863, + 5.300000190734863, + 6.0, + 6.5, + 6.099999904632568, + 4.800000190734863, + 3.799999952316284, + 4.300000190734863, + 4.400000095367432, + 4.199999809265137, + 4.800000190734863, + 4.900000095367432, + 4.800000190734863, + 5.900000095367432, + 5.400000095367432, + 5.800000190734863, + 6.099999904632568, + 5.300000190734863, + 4.900000095367432, + 5.300000190734863, + 4.699999809265137, + 3.5999999046325684, + 3.200000047683716, + 3.299999952316284, + 4.099999904632568 + ] + } +} \ No newline at end of file diff --git a/utilities/forecastAnalysis/storical/.output/2024_backup.json b/utilities/forecastAnalysis/storical/.output/2024_backup.json new file mode 100644 index 0000000000000000000000000000000000000000..95030b79efac11201e5bb72d931006d82501366c --- /dev/null +++ b/utilities/forecastAnalysis/storical/.output/2024_backup.json @@ -0,0 +1,529 @@ +{ + "latitude": 39.40245819091797, + "longitude": -8.3287353515625, + "elevation": 160.0, + "utc_offset_seconds": 3600, + "timezone": "Europe/Lisbon", + "timezone_abbreviation": "GMT+1", + "hourly_units": { + "time": "unixtime", + "wind_speed_10m": "m/s", + "wind_direction_10m": "\u00b0", + "wind_gusts_10m": "m/s" + }, + "hourly": { + "start_time": 1728428400, + "end_time": 1729033200, + "interval": 3600, + "wind_speed_10m": [ + 7.56736421585083, + 7.884795188903809, + 8.452810287475586, + 9.27698802947998, + 9.709016799926758, + 10.124228477478027, + 10.612492561340332, + 10.22998046875, + 10.430005073547363, + 9.05124282836914, + 10.60954761505127, + 10.679536819458008, + 11.234878540039062, + 10.320005416870117, + 8.090271949768066, + 7.0260233879089355, + 7.25, + 7.178092002868652, + 6.548472881317139, + 5.2177581787109375, + 3.4329285621643066, + 2.562225580215454, + 1.9163767099380493, + 1.6155494451522827, + 1.346291184425354, + 1.3453624248504639, + 1.5239750146865845, + 1.3729530572891235, + 1.6492422819137573, + 0.8631338477134705, + 0.570087730884552, + 0.6020797491073608, + 0.6020797491073608, + 1.4317820072174072, + 1.3892444372177124, + 1.346291184425354, + 1.1884864568710327, + 1.518222689628601, + 0.7017834186553955, + 0.9962429404258728, + 0.8276472687721252, + 1.4637281894683838, + 2.7829840183258057, + 3.1622774600982666, + 1.8848077058792114, + 0.5147814750671387, + 0.44999998807907104, + 1.4300349950790405, + 2.753633975982666, + 3.0675723552703857, + 2.9702694416046143, + 3.6359317302703857, + 3.6891732215881348, + 4.2190046310424805, + 5.161637306213379, + 5.970343589782715, + 6.3063459396362305, + 7.14002799987793, + 6.6528191566467285, + 7.433034420013428, + 6.817807674407959, + 6.251799583435059, + 6.995891571044922, + 7.1562910079956055, + 7.884478569030762, + 8.13034439086914, + 6.578753471374512, + 7.010884761810303, + 6.964194297790527, + 6.229767322540283, + 5.510898590087891, + 5.934011936187744, + 6.010407447814941, + 4.687216758728027, + 4.570558071136475, + 4.512482643127441, + 6.27873420715332, + 4.099999904632568, + 6.958807468414307, + 5.412023544311523, + 3.4590461254119873, + 4.481350421905518, + 3.938591241836548, + 4.352585315704346, + 4.007804870605469, + 4.447752475738525, + 3.555980920791626, + 3.530226469039917, + 4.176422119140625, + 3.4471004009246826, + 1.2658988237380981, + 1.3601469993591309, + 2.5347583293914795, + 3.6503424644470215, + 3.5794553756713867, + 3.896472692489624, + 4.492215633392334, + 4.540099143981934, + 3.9080045223236084, + 3.3241539001464844, + 4.323482513427734, + 4.352585315704346, + 4.601086616516113, + 4.550274848937988, + 4.351149082183838, + 4.44437837600708, + 5.83030891418457, + 5.889821529388428, + 5.530144691467285, + 5.517245769500732, + 3.889087200164795, + 3.9274673461914062, + 3.448187828063965, + 3.570013999938965, + 4.0115461349487305, + 3.7476658821105957, + 3.5794553756713867, + 4.05277681350708, + 4.031128883361816, + 4.123105525970459, + 3.676955223083496, + 2.8040149211883545, + 2.11482834815979, + 2.25887131690979, + 2.3547823429107666, + 3.2015621662139893, + 3.2388269901275635, + 3.6090164184570312, + 3.592352867126465, + 3.727264642715454, + 3.06471848487854, + 2.992072820663452, + 3.555629253387451, + 3.8600518703460693, + 3.4928500652313232, + 3.268409490585327, + 3.669468641281128, + 2.500499963760376, + 2.3837993144989014, + 1.1672617197036743, + 0.4949747323989868, + 1.0111874341964722, + 1.552417516708374, + 1.3152945041656494, + 1.6770509481430054, + 1.775528073310852, + 1.735655426979065, + 1.6620770692825317, + 1.735655426979065, + 2.570019483566284, + 3.4655447006225586, + 3.8242645263671875, + 3.8993589878082275, + 5.824946403503418, + 6.700746536254883, + 6.213895797729492, + 5.819364070892334, + 7.356799602508545, + 4.841745376586914, + 5.740426540374756, + 5.992703914642334, + 5.856833457946777, + 6.5614399909973145, + 8.285529136657715, + 10.123734474182129, + 6.082967758178711, + 6.668208599090576, + 5.8045244216918945 + ], + "wind_direction_10m": [ + 201.30938720703125, + 195.44638061523438, + 190.9110870361328, + 194.03627014160156, + 197.6885528564453, + 200.22494506835938, + 201.85159301757812, + 211.20382690429688, + 216.81504821777344, + 225.4475555419922, + 235.56094360351562, + 240.55465698242188, + 245.8303985595703, + 255.6944122314453, + 280.6848449707031, + 286.1134948730469, + 279.5272216796875, + 280.84027099609375, + 284.1423645019531, + 288.4350280761719, + 282.61932373046875, + 275.5992431640625, + 262.5042419433594, + 248.1985321044922, + 238.67135620117188, + 228.0128631591797, + 221.0089874267578, + 236.88864135742188, + 255.96372985839844, + 259.9920959472656, + 217.8750457763672, + 184.7635498046875, + 175.2364501953125, + 155.22488403320312, + 149.74365234375, + 158.1985321044922, + 202.2490692138672, + 197.24154663085938, + 85.91446685791016, + 107.5256576538086, + 154.98313903808594, + 187.8532257080078, + 197.7839813232422, + 235.30477905273438, + 248.1985321044922, + 299.05450439453125, + 90.0, + 126.46932983398438, + 150.64234924316406, + 160.97430419921875, + 143.90162658691406, + 121.50421142578125, + 122.82854461669922, + 121.42951965332031, + 128.31312561035156, + 116.35040283203125, + 117.37761688232422, + 127.03047943115234, + 132.5633087158203, + 146.52369689941406, + 159.83731079101562, + 178.6251983642578, + 186.5662078857422, + 182.40255737304688, + 190.5972900390625, + 190.2732696533203, + 199.5367431640625, + 200.89089965820312, + 201.03758239746094, + 198.7258758544922, + 191.5137939453125, + 196.1444091796875, + 199.94247436523438, + 191.07015991210938, + 190.08053588867188, + 195.42222595214844, + 197.1363525390625, + 180.0, + 197.13307189941406, + 196.09088134765625, + 184.14454650878906, + 190.93377685546875, + 171.9728546142578, + 178.02511596679688, + 183.57626342773438, + 171.59671020507812, + 152.35411071777344, + 142.48081970214844, + 148.21278381347656, + 203.96249389648438, + 189.09019470214844, + 107.10281372070312, + 112.01133728027344, + 90.7848129272461, + 102.09474182128906, + 98.85787963867188, + 106.82149505615234, + 106.63888549804688, + 106.34825134277344, + 96.9111328125, + 95.97423553466797, + 91.97489166259766, + 91.2453384399414, + 89.37041473388672, + 91.31688690185547, + 107.0080337524414, + 126.28034973144531, + 130.17916870117188, + 127.28440856933594, + 136.46873474121094, + 135.00010681152344, + 148.53590393066406, + 163.1415252685547, + 127.03047943115234, + 112.72977447509766, + 103.10921478271484, + 102.09474182128906, + 92.12104797363281, + 97.12492370605469, + 104.03627014160156, + 112.38018035888672, + 111.99118041992188, + 96.78887939453125, + 95.07952117919922, + 93.65215301513672, + 104.4703369140625, + 98.88057708740234, + 100.37579345703125, + 98.80670928955078, + 96.93425750732422, + 84.38251495361328, + 80.38034057617188, + 93.22445678710938, + 106.5571517944336, + 113.62938690185547, + 119.3099136352539, + 109.91649627685547, + 168.4654083251953, + 260.3401794433594, + 279.8657531738281, + 135.00010681152344, + 171.4693145751953, + 165.0685272216797, + 171.25392150878906, + 169.69520568847656, + 170.27249145507812, + 138.50363159179688, + 133.7812042236328, + 131.49636840820312, + 142.90708923339844, + 133.83094787597656, + 131.82008361816406, + 139.15972900390625, + 145.49142456054688, + 142.2749481201172, + 145.1589813232422, + 139.8793487548828, + 153.78330993652344, + 144.6685791015625, + 142.43133544921875, + 144.8512420654297, + 121.38314056396484, + 119.69063568115234, + 119.65901947021484, + 132.19747924804688, + 141.3401641845703, + 169.19564819335938, + 197.03024291992188 + ], + "wind_gusts_10m": [ + 12.399999618530273, + 12.399999618530273, + 13.300000190734863, + 14.800000190734863, + 15.300000190734863, + 16.100000381469727, + 16.799999237060547, + 18.799999237060547, + 18.100000381469727, + 18.0, + 17.5, + 17.299999237060547, + 17.899999618530273, + 18.100000381469727, + 13.399999618530273, + 13.0, + 11.600000381469727, + 12.399999618530273, + 11.600000381469727, + 10.399999618530273, + 8.199999809265137, + 5.5, + 4.099999904632568, + 3.0, + 2.5, + 2.0999999046325684, + 2.299999952316284, + 2.299999952316284, + 2.0, + 2.0999999046325684, + 1.2000000476837158, + 0.8999999761581421, + 1.100000023841858, + 2.9000000953674316, + 3.5, + 3.9000000953674316, + 3.799999952316284, + 4.099999904632568, + 3.200000047683716, + 3.5, + 3.4000000953674316, + 3.200000047683716, + 4.5, + 5.0, + 5.0, + 2.799999952316284, + 1.100000023841858, + 2.0999999046325684, + 4.099999904632568, + 4.900000095367432, + 4.599999904632568, + 5.599999904632568, + 6.0, + 6.5, + 8.199999809265137, + 9.199999809265137, + 9.899999618530273, + 11.5, + 11.199999809265137, + 11.800000190734863, + 12.899999618530273, + 12.399999618530273, + 13.100000381469727, + 13.5, + 12.899999618530273, + 13.800000190734863, + 12.899999618530273, + 11.5, + 11.699999809265137, + 11.300000190734863, + 10.100000381469727, + 9.699999809265137, + 10.399999618530273, + 9.5, + 8.0, + 7.900000095367432, + 9.899999618530273, + 9.800000190734863, + 11.0, + 11.300000190734863, + 8.600000381469727, + 7.400000095367432, + 7.099999904632568, + 8.600000381469727, + 8.5, + 8.0, + 6.699999809265137, + 8.300000190734863, + 7.5, + 7.699999809265137, + 5.699999809265137, + 2.299999952316284, + 4.099999904632568, + 5.699999809265137, + 6.0, + 6.199999809265137, + 7.099999904632568, + 7.599999904632568, + 8.600000381469727, + 6.400000095367432, + 6.900000095367432, + 7.199999809265137, + 7.300000190734863, + 7.400000095367432, + 7.099999904632568, + 7.099999904632568, + 9.5, + 9.800000190734863, + 9.800000190734863, + 9.399999618530273, + 7.900000095367432, + 7.099999904632568, + 7.0, + 5.800000190734863, + 6.5, + 6.5, + 5.900000095367432, + 6.199999809265137, + 6.300000190734863, + 6.599999904632568, + 6.400000095367432, + 5.699999809265137, + 3.700000047683716, + 3.5, + 3.5, + 4.900000095367432, + 5.099999904632568, + 5.5, + 5.900000095367432, + 6.0, + 6.0, + 5.599999904632568, + 6.599999904632568, + 7.099999904632568, + 7.699999809265137, + 7.5, + 6.400000095367432, + 6.400000095367432, + 4.699999809265137, + 4.099999904632568, + 1.600000023841858, + 1.5, + 2.4000000953674316, + 2.4000000953674316, + 2.4000000953674316, + 2.799999952316284, + 2.799999952316284, + 2.700000047683716, + 2.9000000953674316, + 4.0, + 5.5, + 6.199999809265137, + 6.199999809265137, + 8.899999618530273, + 10.899999618530273, + 11.399999618530273, + 10.0, + 11.800000190734863, + 9.5, + 9.5, + 10.699999809265137, + 10.300000190734863, + 10.300000190734863, + 13.0, + 16.200000762939453, + 15.899999618530273, + 10.600000381469727, + 10.699999809265137 + ] + } +} \ No newline at end of file diff --git a/utilities/forecastAnalysis/storical/.output/coordinate.txt b/utilities/forecastAnalysis/storical/.output/coordinate.txt new file mode 100644 index 0000000000000000000000000000000000000000..2eebfd47d45acc9c2b5e820dd46aa0a09e83e883 --- /dev/null +++ b/utilities/forecastAnalysis/storical/.output/coordinate.txt @@ -0,0 +1,21 @@ +{ + "latitude": 41.792618, (41.8084579) + "longitude": 14.086956, (14.0546408) + "generationtime_ms": 0.0710487365722656, + "utc_offset_seconds": 7200, + "timezone": "Europe/Rome", + "timezone_abbreviation": "CEST", + "elevation": 1411, + "hourly_units": { + "time": "unixtime", + "wind_speed_10m": "m/s", + "wind_direction_10m": "°", + "wind_gusts_10m": "m/s" + }, + "hourly": { + "time": [1505167200, 1505170800, 1505174400, 1505178000, 1505181600, 1505185200, 1505188800, 1505192400, 1505196000, 1505199600, 1505203200, 1505206800, 1505210400, 1505214000, 1505217600, 1505221200, 1505224800, 1505228400, 1505232000, 1505235600, 1505239200, 1505242800, 1505246400, 1505250000, 1505253600, 1505257200, 1505260800, 1505264400, 1505268000, 1505271600, 1505275200, 1505278800, 1505282400, 1505286000, 1505289600, 1505293200, 1505296800, 1505300400, 1505304000, 1505307600, 1505311200, 1505314800, 1505318400, 1505322000, 1505325600, 1505329200, 1505332800, 1505336400, 1505340000, 1505343600, 1505347200, 1505350800, 1505354400, 1505358000, 1505361600, 1505365200, 1505368800, 1505372400, 1505376000, 1505379600, 1505383200, 1505386800, 1505390400, 1505394000, 1505397600, 1505401200, 1505404800, 1505408400, 1505412000, 1505415600, 1505419200, 1505422800, 1505426400, 1505430000, 1505433600, 1505437200, 1505440800, 1505444400, 1505448000, 1505451600, 1505455200, 1505458800, 1505462400, 1505466000, 1505469600, 1505473200, 1505476800, 1505480400, 1505484000, 1505487600, 1505491200, 1505494800, 1505498400, 1505502000, 1505505600, 1505509200, 1505512800, 1505516400, 1505520000, 1505523600, 1505527200, 1505530800, 1505534400, 1505538000, 1505541600, 1505545200, 1505548800, 1505552400, 1505556000, 1505559600, 1505563200, 1505566800, 1505570400, 1505574000, 1505577600, 1505581200, 1505584800, 1505588400, 1505592000, 1505595600], + "wind_speed_10m": [1.24, 1.57, 2, 1.32, 1.84, 1.96, 1.87, 1.9, 1.9, 1.58, 2.69, 3.26, 3.56, 3.26, 3.61, 3.26, 3.41, 3.61, 2.92, 1.66, 1.52, 1.7, 1, 1.04, 1.3, 1.14, 1.17, 0.81, 0.94, 0.76, 0.63, 0.73, 1.03, 0.32, 0.95, 1.25, 1.64, 1.8, 1.7, 2.69, 3.29, 2.69, 2.33, 1.32, 1.58, 1.22, 1.02, 0.95, 0.85, 0.73, 1.4, 1.02, 1.02, 0.92, 0.95, 0.85, 1.12, 1.08, 1.3, 1.78, 1.78, 1.78, 1.93, 2.16, 2.26, 2.33, 2.13, 1.22, 1.33, 1.3, 1.6, 1.71, 1.63, 1.62, 1.52, 1.26, 1.08, 0.76, 0.67, 0.67, 1.21, 0.61, 1.02, 1.92, 2.2, 2.38, 2.72, 2.92, 2.9, 2.41, 1.7, 1.25, 1.44, 1.26, 1.1, 1.1, 1.2, 1.2, 1.81, 1.22, 1.26, 1.26, 1.49, 1.53, 2.15, 2.15, 2.87, 3.45, 4.28, 4.08, 4.08, 4.25, 3.16, 3.31, 3.01, 1.79, 1.7, 1.91, 2.27, 1.77], + "wind_direction_10m": [284, 297, 270, 279, 283, 285, 286, 288, 270, 215, 222, 230, 232, 227, 228, 220, 220, 228, 218, 213, 203, 208, 264, 253, 270, 285, 290, 300, 302, 293, 288, 286, 299, 162, 162, 151, 142, 146, 135, 149, 160, 165, 170, 171, 215, 261, 281, 288, 291, 286, 270, 281, 281, 283, 288, 291, 280, 236, 212, 218, 218, 218, 201, 214, 225, 223, 221, 235, 257, 266, 274, 277, 281, 292, 293, 288, 292, 293, 297, 297, 294, 261, 169, 171, 180, 195, 197, 211, 224, 228, 208, 209, 236, 252, 270, 270, 265, 265, 264, 261, 252, 252, 250, 259, 242, 208, 209, 210, 217, 211, 211, 207, 215, 205, 201, 207, 230, 227, 221, 227], + "wind_gusts_10m": [10.8, 11.1, 11, 11.1, 10.7, 11, 10.9, 9.9, 9.5, 9.8, 12.1, 13.6, 14.7, 14.5, 15.3, 14.2, 13.8, 14.8, 14.6, 13.7, 11.8, 11.7, 11.4, 9.9, 10, 9.7, 8.9, 8.4, 8, 8, 7, 5.5, 4.9, 4.6, 4.1, 4.9, 5.7, 6.6, 6.5, 8.3, 10.5, 10.6, 8.5, 7.3, 5.7, 5.5, 4.9, 4.8, 4.9, 4.9, 4.9, 5.2, 5, 5.1, 5.1, 5.1, 5, 5, 5.1, 6.4, 6.6, 6.6, 7, 7.8, 8.3, 8.8, 9.1, 8.9, 8.3, 8.3, 8.5, 8.8, 8.5, 8.2, 8.2, 8, 6.5, 5.7, 4.7, 4.1, 4.3, 4.4, 4.1, 6.7, 8.1, 8.5, 10.2, 10.3, 10.3, 10, 8.8, 7.6, 7.6, 7.7, 7.9, 8.2, 9, 9.8, 10.6, 11.4, 11.4, 11.8, 12.7, 12.9, 13.9, 14.3, 15.1, 15.6, 17.2, 17.9, 17.8, 17.5, 17.8, 15.4, 15.5, 15.7, 13.3, 13.2, 14.6, 14.7] + } +} \ No newline at end of file diff --git a/utilities/forecastAnalysis/storical/data/euroc/2017.csv b/utilities/forecastAnalysis/storical/data/euroc/2017.csv new file mode 100644 index 0000000000000000000000000000000000000000..01b3cb7759b03cd74410ed756d148e0feda73e32 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2017.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1507503600,18.3,1.98,315,3.10 +1507507200,17.1,2.69,315,3.10 +1507510800,16.1,2.62,320,3.40 +1507514400,15.2,2.69,315,3.40 +1507518000,15.7,2.27,311,3.30 +1507521600,16.2,2.16,326,2.80 +1507525200,15.5,2.28,345,2.80 +1507528800,15.4,2.10,357,2.90 +1507532400,15.2,1.90,3,2.60 +1507536000,15.7,1.44,34,2.30 +1507539600,18.9,1.10,360,3.20 +1507543200,22.4,1.25,331,4.00 +1507546800,25.3,1.28,309,4.50 +1507550400,27.1,1.62,292,4.90 +1507554000,29.1,1.93,291,5.50 +1507557600,30.3,2.40,287,6.00 +1507561200,30.7,2.65,281,6.20 +1507564800,30.7,2.50,286,6.10 +1507568400,30.2,2.92,308,5.50 +1507572000,27.5,3.67,331,5.70 +1507575600,24.5,3.86,339,6.20 +1507579200,22.3,4.12,346,6.50 +1507582800,20.5,4.08,349,6.50 +1507586400,19.1,3.23,338,6.40 +1507590000,18.0,2.27,319,5.10 +1507593600,16.5,2.15,338,3.70 +1507597200,15.6,2.21,342,3.60 +1507600800,14.4,2.55,349,3.60 +1507604400,13.4,3.08,347,4.00 +1507608000,13.0,3.05,328,4.00 +1507611600,12.9,2.60,2,4.10 +1507615200,11.6,2.41,42,3.30 +1507618800,10.9,2.04,79,3.30 +1507622400,13.8,2.83,98,4.60 +1507626000,18.2,2.11,95,4.70 +1507629600,22.6,1.50,94,4.70 +1507633200,25.7,0.63,72,4.30 +1507636800,26.6,1.12,207,3.70 +1507640400,28.2,1.89,238,5.10 +1507644000,29.1,2.18,254,5.60 +1507647600,29.5,2.02,261,5.50 +1507651200,29.4,2.12,262,5.00 +1507654800,28.7,2.34,250,4.80 +1507658400,26.0,2.02,237,4.10 +1507662000,23.6,2.62,313,3.90 +1507665600,21.0,2.69,345,5.10 +1507669200,19.4,2.02,340,4.30 +1507672800,18.1,1.80,341,3.20 +1507676400,16.9,2.18,344,3.00 +1507680000,15.9,2.86,335,3.10 +1507683600,15.3,2.16,347,3.60 +1507687200,13.9,2.12,352,3.10 +1507690800,12.8,2.72,354,3.50 +1507694400,12.4,2.70,358,3.40 +1507698000,12.8,2.13,41,3.30 +1507701600,11.0,2.11,85,2.60 +1507705200,10.2,2.02,99,2.60 +1507708800,13.2,1.60,94,3.10 +1507712400,17.3,1.12,80,3.40 +1507716000,21.6,0.61,99,3.50 +1507719600,25.3,0.32,162,3.30 +1507723200,27.2,0.63,72,3.80 +1507726800,29.0,0.64,39,3.70 +1507730400,30.0,1.34,27,4.50 +1507734000,30.5,1.93,21,5.10 +1507737600,30.4,2.02,20,5.10 +1507741200,30.0,1.87,16,4.80 +1507744800,27.3,1.68,343,3.70 +1507748400,25.5,3.40,346,5.10 +1507752000,23.8,3.51,355,5.70 +1507755600,22.5,3.20,2,5.70 +1507759200,21.2,1.87,16,5.20 +1507762800,20.2,1.70,40,2.90 +1507766400,20.5,2.33,80,2.80 +1507770000,20.4,2.93,82,4.60 +1507773600,20.3,3.41,93,5.60 +1507777200,19.8,4.00,90,6.50 +1507780800,19.3,4.10,91,6.70 +1507784400,18.9,4.54,98,7.40 +1507788000,18.1,4.46,106,7.50 +1507791600,17.4,3.96,106,7.30 +1507795200,19.7,4.37,106,7.00 +1507798800,23.2,3.72,114,7.00 +1507802400,25.0,3.36,150,7.00 +1507806000,26.5,3.24,171,7.10 +1507809600,27.6,3.21,176,7.60 +1507813200,28.9,3.04,189,7.20 +1507816800,29.3,3.05,203,7.00 +1507820400,29.8,3.62,204,7.50 +1507824000,29.4,4.33,214,8.20 +1507827600,28.0,4.30,234,8.30 +1507831200,25.5,3.67,259,7.60 +1507834800,23.7,3.72,239,6.00 +1507838400,21.6,2.69,255,5.90 +1507842000,19.5,1.73,280,4.20 +1507845600,17.9,0.90,270,2.70 +1507849200,16.6,0.92,257,1.50 +1507852800,15.4,1.63,259,1.40 +1507856400,15.8,0.85,249,2.10 +1507860000,15.3,0.86,54,1.20 +1507863600,14.4,1.25,61,1.50 +1507867200,13.0,1.32,99,1.60 +1507870800,13.5,0.81,120,1.70 +1507874400,13.0,0.50,143,1.70 +1507878000,13.2,0.50,217,1.70 +1507881600,13.3,0.50,37,1.80 +1507885200,13.9,0.70,90,2.90 +1507888800,15.7,0.50,143,3.10 +1507892400,19.3,0.67,207,3.80 +1507896000,19.9,0.85,225,4.10 +1507899600,22.1,1.22,235,4.60 +1507903200,23.8,1.62,248,5.10 +1507906800,24.7,2.00,267,5.50 +1507910400,25.0,2.01,276,5.40 +1507914000,24.5,1.58,288,5.00 +1507917600,23.1,0.51,281,3.70 +1507921200,22.0,1.06,221,1.60 +1507924800,21.2,1.57,297,2.00 +1507928400,19.6,1.40,356,2.40 +1507932000,18.3,0.98,294,2.20 +1507935600,17.1,0.91,354,1.60 +1507939200,17.4,1.00,53,1.40 +1507942800,16.7,1.32,99,1.90 +1507946400,16.2,1.39,120,2.10 +1507950000,15.9,2.12,109,3.20 +1507953600,15.7,2.33,100,3.70 +1507957200,15.2,2.00,90,3.60 +1507960800,15.7,3.55,100,5.60 +1507964400,16.8,3.42,105,5.90 +1507968000,18.3,3.22,83,5.50 +1507971600,21.7,3.52,83,6.50 +1507975200,24.5,2.50,92,6.50 +1507978800,27.3,3.06,101,6.20 +1507982400,30.2,3.56,128,8.50 +1507986000,31.8,2.85,162,7.30 +1507989600,32.7,3.13,197,6.80 +1507993200,32.4,3.22,216,6.90 +1507996800,32.8,3.10,180,6.60 +1508000400,32.6,2.98,194,6.20 +1508004000,30.0,1.66,237,5.00 +1508007600,27.9,1.53,238,2.60 +1508011200,26.2,1.63,223,2.30 +1508014800,24.9,1.56,140,2.70 +1508018400,24.2,2.01,96,3.00 +1508022000,22.7,3.20,110,5.10 +1508025600,23.3,4.88,105,5.70 +1508029200,24.1,2.31,162,8.40 +1508032800,23.6,2.10,205,4.00 +1508036400,22.2,1.70,93,3.20 +1508040000,22.0,2.40,92,3.70 +1508043600,21.5,2.75,109,4.70 +1508047200,19.8,2.04,101,4.50 +1508050800,19.2,1.93,111,3.20 +1508054400,22.3,3.88,102,5.50 +1508058000,25.4,4.49,111,7.80 +1508061600,27.8,4.53,121,8.40 +1508065200,30.6,4.81,135,9.00 +1508068800,32.8,6.30,147,10.80 +1508072400,34.5,7.84,169,13.60 +1508076000,34.9,8.24,174,14.60 +1508079600,34.2,8.71,171,15.30 +1508083200,34.0,8.01,177,14.90 +1508086800,33.2,7.10,180,13.40 +1508090400,31.3,5.74,173,11.70 +1508094000,29.8,5.41,177,9.40 +1508097600,28.1,4.74,187,9.00 +1508101200,26.8,5.00,180,8.10 +1508104800,25.8,6.00,182,10.10 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2018.csv b/utilities/forecastAnalysis/storical/data/euroc/2018.csv new file mode 100644 index 0000000000000000000000000000000000000000..3209aadb4ea3f8a3d2827dc1dbefef5ab0db941c --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2018.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1539039600,17.5,3.90,89,6.60 +1539043200,17.2,4.70,89,6.80 +1539046800,16.1,4.85,82,8.10 +1539050400,15.4,4.73,84,8.00 +1539054000,15.0,5.43,84,8.70 +1539057600,14.7,5.41,87,9.30 +1539061200,13.9,4.71,86,8.90 +1539064800,13.6,5.12,84,8.50 +1539068400,13.6,5.43,84,8.70 +1539072000,15.8,6.08,81,9.60 +1539075600,18.6,6.59,80,11.10 +1539079200,21.0,6.34,84,11.40 +1539082800,23.1,5.70,92,11.30 +1539086400,24.9,4.80,91,10.50 +1539090000,25.8,3.91,93,9.10 +1539093600,26.2,2.90,90,8.00 +1539097200,26.2,2.53,81,6.60 +1539100800,26.1,2.71,86,5.90 +1539104400,25.7,2.70,88,5.70 +1539108000,23.4,1.53,79,5.00 +1539111600,21.6,2.10,65,3.10 +1539115200,20.6,3.83,70,6.00 +1539118800,20.0,4.83,77,7.80 +1539122400,19.2,3.71,93,7.90 +1539126000,18.0,3.23,106,6.10 +1539129600,16.9,2.77,103,5.30 +1539133200,15.7,2.28,113,4.60 +1539136800,14.5,2.05,133,3.70 +1539140400,13.6,2.39,123,3.80 +1539144000,12.9,2.91,131,4.60 +1539147600,12.6,2.50,127,4.70 +1539151200,12.7,2.56,121,4.10 +1539154800,13.9,3.09,115,4.80 +1539158400,15.4,3.47,123,5.90 +1539162000,16.9,3.92,174,6.90 +1539165600,18.5,3.54,172,7.00 +1539169200,21.1,3.96,164,7.60 +1539172800,21.8,4.67,190,8.80 +1539176400,23.5,5.05,207,9.30 +1539180000,23.9,6.94,223,11.70 +1539183600,23.0,7.13,202,13.40 +1539187200,23.0,6.54,209,12.30 +1539190800,21.9,5.82,209,11.30 +1539194400,20.3,4.92,209,9.90 +1539198000,19.4,4.02,207,8.00 +1539201600,18.2,4.08,216,6.70 +1539205200,17.3,3.75,222,6.80 +1539208800,16.8,3.67,209,6.60 +1539212400,16.4,2.65,191,6.10 +1539216000,17.6,4.20,179,5.60 +1539219600,17.9,4.62,185,7.70 +1539223200,18.2,4.78,196,8.10 +1539226800,18.0,4.37,196,9.70 +1539230400,17.8,4.85,188,7.80 +1539234000,17.6,4.57,203,8.40 +1539237600,17.2,3.94,204,7.80 +1539241200,17.4,4.51,193,7.00 +1539244800,18.1,6.70,232,10.80 +1539248400,18.4,4.49,253,10.80 +1539252000,19.6,3.13,263,8.20 +1539255600,20.5,2.40,268,8.50 +1539259200,20.4,2.30,270,5.50 +1539262800,22.2,3.40,256,6.80 +1539266400,22.6,4.21,252,8.00 +1539270000,22.6,3.80,243,8.00 +1539273600,22.5,4.34,232,7.60 +1539277200,21.8,3.94,240,7.70 +1539280800,19.9,2.24,260,6.60 +1539284400,18.6,2.56,239,4.20 +1539288000,17.3,2.58,234,4.30 +1539291600,16.2,1.70,225,4.30 +1539295200,15.5,1.55,195,2.80 +1539298800,15.0,2.00,177,3.30 +1539302400,15.3,2.83,172,3.90 +1539306000,15.1,2.94,162,4.80 +1539309600,15.0,3.01,159,4.90 +1539313200,14.7,3.18,152,5.20 +1539316800,14.6,3.18,152,5.20 +1539320400,14.5,3.19,148,5.30 +1539324000,14.9,3.47,147,5.70 +1539327600,15.2,3.61,146,5.80 +1539331200,16.8,3.94,144,6.60 +1539334800,19.0,4.13,148,7.30 +1539338400,21.1,4.22,166,8.00 +1539342000,22.8,4.10,179,8.00 +1539345600,24.2,4.35,203,8.00 +1539349200,24.2,4.12,203,7.60 +1539352800,24.6,4.48,204,7.90 +1539356400,25.1,3.98,198,8.30 +1539360000,25.2,4.22,202,7.30 +1539363600,24.7,3.89,224,7.50 +1539367200,22.4,2.34,230,6.40 +1539370800,21.2,2.00,217,3.90 +1539374400,20.1,1.84,209,3.40 +1539378000,19.1,1.61,173,3.00 +1539381600,18.2,2.06,151,3.40 +1539385200,17.3,1.70,152,3.40 +1539388800,17.5,2.19,137,3.20 +1539392400,17.3,2.56,129,4.20 +1539396000,16.8,2.73,118,4.50 +1539399600,16.6,2.61,122,4.60 +1539403200,16.2,2.59,118,4.40 +1539406800,16.0,3.58,117,5.70 +1539410400,15.8,3.90,113,6.30 +1539414000,15.9,4.37,110,6.80 +1539417600,17.9,4.90,110,7.90 +1539421200,21.0,4.75,120,8.50 +1539424800,23.6,4.46,138,8.40 +1539428400,25.4,4.12,157,8.30 +1539432000,26.3,4.65,155,8.50 +1539435600,27.8,5.48,159,10.00 +1539439200,28.8,5.71,169,10.30 +1539442800,29.2,5.56,188,10.40 +1539446400,29.0,5.53,193,9.90 +1539450000,27.9,4.52,205,9.60 +1539453600,24.6,3.72,234,7.50 +1539457200,23.6,2.71,184,6.00 +1539460800,23.3,5.89,140,8.80 +1539464400,23.3,10.43,156,16.90 +1539468000,21.9,15.62,167,25.50 +1539471600,16.8,15.29,264,31.10 +1539475200,15.3,6.93,316,32.50 +1539478800,14.1,5.72,289,11.70 +1539482400,13.9,7.46,305,11.80 +1539486000,13.8,6.94,306,13.00 +1539489600,13.1,6.09,312,11.40 +1539493200,13.4,6.22,314,10.40 +1539496800,12.8,5.66,312,10.40 +1539500400,12.4,5.03,311,9.50 +1539504000,13.8,5.00,307,8.90 +1539507600,15.4,7.95,320,11.90 +1539511200,16.4,9.02,324,15.10 +1539514800,16.6,8.24,324,15.30 +1539518400,17.2,7.42,316,15.10 +1539522000,17.6,7.14,317,13.20 +1539525600,17.4,7.94,319,13.90 +1539529200,17.3,8.15,318,13.80 +1539532800,16.8,7.08,318,13.80 +1539536400,16.1,6.66,319,12.30 +1539540000,14.8,4.95,315,11.00 +1539543600,13.7,3.92,308,8.10 +1539547200,12.9,3.09,295,6.50 +1539550800,12.3,2.12,278,5.10 +1539554400,11.9,1.36,234,3.50 +1539558000,11.5,1.75,204,2.80 +1539561600,11.2,2.46,207,3.90 +1539565200,11.6,2.82,197,4.70 +1539568800,12.1,3.31,183,5.40 +1539572400,12.8,4.20,181,6.80 +1539576000,13.1,4.83,186,7.70 +1539579600,13.9,6.46,196,10.40 +1539583200,14.9,7.70,205,12.60 +1539586800,15.6,7.94,216,13.10 +1539590400,16.1,7.44,229,13.10 +1539594000,16.7,5.94,257,14.40 +1539597600,18.5,6.10,272,13.30 +1539601200,19.4,6.07,279,13.50 +1539604800,18.6,4.83,276,13.10 +1539608400,17.5,4.54,284,11.30 +1539612000,16.8,4.03,293,8.20 +1539615600,17.2,3.20,290,7.00 +1539619200,17.3,2.72,287,6.80 +1539622800,17.3,1.90,267,4.90 +1539626400,16.2,1.20,222,3.50 +1539630000,15.5,1.39,210,2.20 +1539633600,14.7,1.53,212,2.40 +1539637200,15.0,1.39,201,2.30 +1539640800,14.9,1.24,166,1.90 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2019.csv b/utilities/forecastAnalysis/storical/data/euroc/2019.csv new file mode 100644 index 0000000000000000000000000000000000000000..bf372f3be6c13389b809a78867bee6ee95bce333 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2019.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1570575600,16.2,7.06,339,11.80 +1570579200,15.6,6.55,341,11.50 +1570582800,15.3,5.72,341,10.70 +1570586400,14.8,5.28,335,9.30 +1570590000,14.2,6.09,337,9.90 +1570593600,13.9,5.50,341,10.00 +1570597200,13.8,5.42,337,9.00 +1570600800,13.3,5.16,338,9.00 +1570604400,13.0,5.66,339,9.10 +1570608000,14.6,5.95,340,9.70 +1570611600,16.9,6.14,341,10.60 +1570615200,19.4,6.71,343,11.80 +1570618800,21.7,6.58,343,12.00 +1570622400,23.4,6.14,341,12.30 +1570626000,24.9,6.58,340,12.00 +1570629600,25.6,7.02,340,12.60 +1570633200,25.5,7.40,341,13.10 +1570636800,24.4,7.88,340,13.50 +1570640400,22.1,8.10,334,13.70 +1570644000,19.5,7.38,333,13.60 +1570647600,17.9,7.43,340,12.40 +1570651200,16.6,7.24,342,12.10 +1570654800,15.7,6.58,343,11.70 +1570658400,15.0,5.95,343,10.60 +1570662000,14.5,5.36,346,9.60 +1570665600,14.0,4.41,347,8.60 +1570669200,13.5,3.83,345,7.20 +1570672800,13.0,3.59,347,6.20 +1570676400,12.7,3.42,345,5.80 +1570680000,12.3,2.89,346,5.60 +1570683600,11.8,2.33,350,4.60 +1570687200,11.1,2.11,355,3.70 +1570690800,10.6,1.92,9,3.20 +1570694400,13.2,2.06,14,3.80 +1570698000,16.9,1.49,20,3.90 +1570701600,21.2,2.16,56,5.10 +1570705200,24.9,2.47,69,6.00 +1570708800,27.2,2.61,86,6.00 +1570712400,28.6,1.80,93,6.10 +1570716000,29.5,1.10,90,5.40 +1570719600,30.0,0.60,90,4.50 +1570723200,30.2,0.00,180,3.50 +1570726800,29.8,1.14,285,3.00 +1570730400,27.8,1.10,270,3.10 +1570734000,26.4,1.94,282,2.50 +1570737600,22.1,4.22,338,6.80 +1570741200,20.4,3.53,335,6.70 +1570744800,19.6,2.73,336,5.40 +1570748400,18.7,2.06,337,4.20 +1570752000,17.6,1.68,343,3.30 +1570755600,16.5,1.97,336,2.50 +1570759200,16.0,2.00,323,2.90 +1570762800,15.8,1.84,331,2.50 +1570766400,15.5,1.50,4,2.30 +1570770000,14.9,1.12,63,1.80 +1570773600,13.8,1.14,105,1.50 +1570777200,13.6,0.92,131,1.50 +1570780800,16.1,0.95,72,2.20 +1570784400,19.3,0.95,72,3.20 +1570788000,22.5,0.51,79,3.30 +1570791600,24.7,0.10,270,3.30 +1570795200,25.9,0.61,189,3.90 +1570798800,27.4,1.00,180,4.00 +1570802400,27.8,1.70,180,4.70 +1570806000,28.4,2.91,184,5.90 +1570809600,28.0,2.44,199,6.10 +1570813200,27.5,1.70,242,5.00 +1570816800,26.7,2.50,233,4.10 +1570820400,25.8,2.97,225,4.90 +1570824000,22.6,2.94,305,4.80 +1570827600,20.6,2.12,315,4.80 +1570831200,19.9,1.41,352,3.70 +1570834800,18.9,0.94,32,2.20 +1570838400,18.6,1.30,58,1.80 +1570842000,18.0,0.94,122,1.90 +1570845600,17.7,1.13,135,1.90 +1570849200,16.3,1.42,141,2.30 +1570852800,15.6,1.25,119,2.30 +1570856400,15.7,1.92,129,3.20 +1570860000,16.3,2.19,133,3.80 +1570863600,16.4,2.97,147,4.50 +1570867200,18.9,3.98,155,6.70 +1570870800,21.1,4.30,181,7.10 +1570874400,22.7,5.52,202,10.10 +1570878000,23.8,4.83,207,9.90 +1570881600,25.0,6.43,201,12.00 +1570885200,26.2,6.95,210,12.20 +1570888800,25.8,7.96,215,14.50 +1570892400,25.1,7.71,214,14.10 +1570896000,24.3,7.45,220,13.50 +1570899600,22.2,6.97,231,12.90 +1570903200,20.3,5.62,231,11.80 +1570906800,19.4,4.81,223,9.20 +1570910400,18.6,4.63,213,7.90 +1570914000,17.5,3.90,203,7.50 +1570917600,16.7,3.83,200,6.30 +1570921200,16.2,3.67,191,6.30 +1570924800,16.6,4.55,171,6.10 +1570928400,16.9,4.69,169,7.90 +1570932000,16.8,4.54,172,7.80 +1570935600,16.6,4.85,172,7.90 +1570939200,16.4,4.88,169,7.90 +1570942800,16.3,4.96,171,8.10 +1570946400,16.2,4.95,172,8.10 +1570950000,16.1,5.06,171,8.10 +1570953600,17.4,5.36,166,8.70 +1570957200,19.3,6.12,175,10.60 +1570960800,21.5,6.89,193,12.30 +1570964400,22.8,6.48,193,12.00 +1570968000,23.7,5.91,176,11.50 +1570971600,24.5,6.45,187,11.40 +1570975200,25.0,6.46,188,11.80 +1570978800,26.0,7.09,202,12.40 +1570982400,25.3,6.75,220,12.40 +1570986000,23.7,6.53,230,11.60 +1570989600,21.7,5.38,235,10.90 +1570993200,20.3,4.81,227,8.80 +1570996800,19.3,4.53,221,7.90 +1571000400,18.5,3.88,215,7.40 +1571004000,17.8,3.98,198,6.60 +1571007600,17.7,5.25,198,8.70 +1571011200,16.7,3.30,178,9.20 +1571014800,16.6,4.55,171,7.50 +1571018400,16.3,5.94,216,10.10 +1571022000,14.4,5.10,344,14.10 +1571025600,13.8,2.69,285,11.20 +1571029200,12.7,2.05,223,4.50 +1571032800,12.8,3.01,201,5.00 +1571036400,13.2,3.89,198,6.30 +1571040000,14.6,4.96,208,8.20 +1571043600,14.9,5.88,215,11.90 +1571047200,14.5,7.38,243,11.60 +1571050800,15.5,5.85,250,12.10 +1571054400,15.2,3.93,255,11.90 +1571058000,17.6,5.42,275,13.10 +1571061600,18.1,6.72,293,13.10 +1571065200,18.0,6.58,298,11.80 +1571068800,17.6,6.07,303,11.30 +1571072400,16.6,5.28,307,10.40 +1571076000,14.9,3.50,307,8.70 +1571079600,13.6,2.61,302,5.90 +1571083200,12.6,1.88,295,4.40 +1571086800,11.8,1.63,281,3.30 +1571090400,11.1,1.96,285,2.90 +1571094000,10.5,2.25,302,3.20 +1571097600,12.0,1.48,242,3.10 +1571101200,9.7,1.80,214,2.40 +1571104800,9.5,1.84,202,2.50 +1571108400,9.3,1.71,201,2.60 +1571112000,9.5,1.90,198,2.90 +1571115600,9.7,1.77,196,3.00 +1571119200,9.8,1.75,193,2.80 +1571122800,10.6,1.41,188,2.70 +1571126400,12.4,1.53,191,2.90 +1571130000,14.5,1.63,227,3.60 +1571133600,16.5,2.51,247,5.30 +1571137200,17.7,3.10,249,6.30 +1571140800,18.5,3.23,248,6.60 +1571144400,19.4,3.38,251,6.80 +1571148000,19.3,3.79,258,6.90 +1571151600,19.3,3.93,255,7.00 +1571155200,19.4,4.12,256,7.20 +1571158800,18.5,3.83,263,7.10 +1571162400,16.5,2.90,268,6.50 +1571166000,15.3,3.06,259,5.10 +1571169600,14.3,2.31,252,5.10 +1571173200,13.3,1.86,234,3.70 +1571176800,12.6,1.94,215,3.20 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2020.csv b/utilities/forecastAnalysis/storical/data/euroc/2020.csv new file mode 100644 index 0000000000000000000000000000000000000000..5780f28c59e5df70cccdb176a50a7d9b7e25b5fc --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2020.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1602198000,15.4,4.35,337,6.90 +1602201600,14.8,4.09,338,7.30 +1602205200,14.3,4.30,335,6.90 +1602208800,14.0,4.12,331,6.90 +1602212400,14.0,3.98,335,6.70 +1602216000,13.9,4.02,333,6.50 +1602219600,13.7,4.07,335,6.70 +1602223200,13.8,3.72,336,6.70 +1602226800,13.8,4.07,335,6.40 +1602230400,14.8,4.59,344,7.70 +1602234000,16.7,4.08,343,7.90 +1602237600,19.0,4.09,338,7.90 +1602241200,21.3,4.34,334,8.60 +1602244800,23.8,3.76,331,9.50 +1602248400,25.2,4.70,331,9.10 +1602252000,25.9,5.41,335,10.10 +1602255600,26.0,5.98,339,10.80 +1602259200,25.3,5.91,341,10.80 +1602262800,23.8,5.74,337,10.40 +1602266400,21.7,5.50,333,9.70 +1602270000,19.5,5.91,336,9.50 +1602273600,17.9,5.95,340,9.60 +1602277200,16.8,5.69,342,9.50 +1602280800,16.0,5.16,338,9.20 +1602284400,15.4,4.39,336,8.20 +1602288000,14.8,3.94,336,7.00 +1602291600,14.5,4.16,336,6.80 +1602295200,14.2,4.05,340,6.80 +1602298800,14.0,3.37,348,6.60 +1602302400,13.7,2.52,353,5.40 +1602306000,13.4,1.80,357,4.10 +1602309600,13.2,1.81,354,3.00 +1602313200,13.2,2.22,352,3.50 +1602316800,14.7,2.40,2,4.30 +1602320400,17.0,1.71,7,4.60 +1602324000,20.0,1.40,360,4.40 +1602327600,22.9,2.18,344,5.70 +1602331200,25.2,2.33,335,6.40 +1602334800,26.9,2.73,332,6.60 +1602338400,27.7,3.04,333,6.90 +1602342000,27.8,3.27,337,7.10 +1602345600,27.6,4.12,337,7.60 +1602349200,26.3,5.77,346,9.70 +1602352800,24.4,5.04,346,9.80 +1602356400,21.9,5.35,343,8.60 +1602360000,20.3,4.47,350,8.60 +1602363600,19.3,3.21,355,7.20 +1602367200,18.5,2.10,3,5.20 +1602370800,18.1,2.34,20,3.90 +1602374400,16.7,2.12,19,4.10 +1602378000,16.1,2.15,28,3.70 +1602381600,15.3,2.34,40,3.80 +1602385200,14.9,2.62,47,4.40 +1602388800,14.7,2.98,50,5.10 +1602392400,14.5,3.16,55,5.40 +1602396000,14.2,3.35,63,5.70 +1602399600,14.0,3.26,63,5.70 +1602403200,15.8,3.98,65,6.50 +1602406800,17.9,5.55,62,9.40 +1602410400,19.8,6.14,60,10.90 +1602414000,21.5,6.23,60,11.30 +1602417600,23.3,5.50,63,11.40 +1602421200,24.7,5.11,59,10.30 +1602424800,25.5,5.22,54,10.00 +1602428400,25.8,5.26,51,10.00 +1602432000,25.5,4.81,47,9.80 +1602435600,24.7,4.42,38,8.70 +1602439200,22.5,3.09,25,7.50 +1602442800,20.4,3.20,14,5.20 +1602446400,18.8,3.64,32,6.00 +1602450000,18.0,3.75,44,6.10 +1602453600,17.5,4.20,52,7.00 +1602457200,16.9,4.13,58,7.10 +1602460800,15.9,3.30,55,6.90 +1602464400,15.4,3.64,58,6.00 +1602468000,15.2,4.65,62,7.60 +1602471600,14.8,5.37,63,8.80 +1602475200,14.1,5.41,71,9.00 +1602478800,13.4,5.22,73,8.90 +1602482400,12.7,5.07,75,8.70 +1602486000,12.2,4.59,79,8.40 +1602489600,13.8,4.69,79,7.90 +1602493200,15.9,5.29,75,9.30 +1602496800,18.1,5.09,70,9.60 +1602500400,19.8,4.52,65,9.50 +1602504000,21.1,3.58,63,8.90 +1602507600,22.2,3.47,49,7.70 +1602511200,22.9,3.20,39,7.70 +1602514800,23.3,2.72,17,7.20 +1602518400,23.4,3.45,350,6.70 +1602522000,22.6,4.83,347,8.20 +1602525600,20.7,3.99,338,8.30 +1602529200,18.2,4.92,331,7.80 +1602532800,16.8,4.59,344,8.00 +1602536400,15.6,3.45,343,7.30 +1602540000,14.6,2.57,347,5.50 +1602543600,13.7,2.01,354,4.20 +1602547200,12.3,2.16,347,3.20 +1602550800,12.0,2.06,346,3.20 +1602554400,12.0,2.89,346,4.50 +1602558000,11.6,2.35,348,4.60 +1602561600,11.3,2.02,351,3.70 +1602565200,11.4,2.16,347,3.50 +1602568800,11.7,2.28,345,3.70 +1602572400,12.0,2.31,342,3.90 +1602576000,14.5,3.08,347,5.20 +1602579600,17.4,3.59,347,6.60 +1602583200,19.9,4.65,341,8.50 +1602586800,21.7,5.83,338,10.60 +1602590400,22.7,5.95,331,12.00 +1602594000,24.0,6.41,329,11.70 +1602597600,24.1,7.10,328,12.70 +1602601200,22.2,7.85,329,13.90 +1602604800,20.8,7.74,327,13.80 +1602608400,18.6,7.17,320,13.40 +1602612000,15.9,6.44,324,12.10 +1602615600,14.6,6.59,330,10.70 +1602619200,13.7,6.45,330,10.80 +1602622800,13.0,5.66,324,10.50 +1602626400,12.6,5.19,320,9.20 +1602630000,12.3,4.82,318,8.60 +1602633600,12.0,5.31,313,8.20 +1602637200,11.9,5.74,319,9.40 +1602640800,11.7,5.80,328,9.60 +1602644400,11.4,5.81,333,9.70 +1602648000,11.0,5.10,334,9.70 +1602651600,10.5,4.57,337,8.50 +1602655200,10.2,4.52,342,7.70 +1602658800,9.9,3.76,343,7.60 +1602662400,11.6,3.96,339,6.80 +1602666000,13.5,4.72,339,8.50 +1602669600,15.8,5.24,336,9.70 +1602673200,17.8,6.36,341,11.50 +1602676800,18.9,6.63,337,12.30 +1602680400,19.8,7.35,338,13.20 +1602684000,19.9,7.58,337,13.50 +1602687600,19.3,7.67,338,13.60 +1602691200,18.6,7.39,337,13.40 +1602694800,17.4,6.95,337,12.80 +1602698400,16.2,6.67,336,11.60 +1602702000,14.4,6.04,333,11.00 +1602705600,13.3,5.68,334,9.90 +1602709200,12.5,5.20,337,9.30 +1602712800,11.8,4.88,334,8.50 +1602716400,11.3,4.34,331,8.00 +1602720000,11.0,3.94,333,7.20 +1602723600,10.8,3.55,328,6.50 +1602727200,10.5,3.14,338,5.80 +1602730800,10.2,2.77,347,5.20 +1602734400,9.6,2.22,352,4.70 +1602738000,9.0,1.91,354,3.70 +1602741600,8.7,2.02,351,3.30 +1602745200,8.6,2.02,351,3.40 +1602748800,10.6,3.04,351,5.20 +1602752400,13.2,3.14,351,6.20 +1602756000,16.2,3.41,355,7.00 +1602759600,18.4,3.71,355,7.70 +1602763200,19.4,4.46,351,8.30 +1602766800,20.4,4.81,343,9.40 +1602770400,20.6,5.54,340,10.40 +1602774000,20.3,6.01,342,11.00 +1602777600,19.9,5.77,346,11.00 +1602781200,19.1,5.52,338,10.20 +1602784800,16.4,6.34,322,10.10 +1602788400,14.9,5.95,335,10.50 +1602792000,13.9,5.50,341,9.70 +1602795600,13.0,5.00,344,8.90 +1602799200,12.2,4.37,344,8.10 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2021.csv b/utilities/forecastAnalysis/storical/data/euroc/2021.csv new file mode 100644 index 0000000000000000000000000000000000000000..42fdef23ee7641143b943710d1acb09afea46c77 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2021.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1633734000,16.6,4.55,341,7.80 +1633737600,16.4,4.05,344,7.30 +1633741200,15.8,3.96,344,6.60 +1633744800,15.3,4.65,341,7.50 +1633748400,14.8,4.08,343,7.60 +1633752000,14.7,4.08,343,6.70 +1633755600,14.7,4.11,342,6.60 +1633759200,14.6,3.76,343,6.60 +1633762800,14.6,3.54,344,6.10 +1633766400,16.0,3.89,342,6.60 +1633770000,18.2,3.67,343,7.10 +1633773600,20.7,2.97,340,7.00 +1633777200,23.3,2.25,339,6.40 +1633780800,24.8,2.16,347,5.80 +1633784400,26.4,2.50,344,6.00 +1633788000,27.3,2.60,337,6.00 +1633791600,27.9,2.82,333,6.20 +1633795200,27.1,4.27,327,7.70 +1633798800,24.6,5.94,327,9.90 +1633802400,22.7,4.35,337,9.80 +1633806000,20.9,4.07,332,7.00 +1633809600,19.3,4.12,337,6.70 +1633813200,18.1,3.57,342,6.60 +1633816800,17.3,2.82,343,5.60 +1633820400,16.6,1.77,344,4.40 +1633824000,16.1,1.71,353,2.70 +1633827600,15.4,2.37,28,3.10 +1633831200,15.4,2.46,63,3.50 +1633834800,15.9,2.26,77,3.50 +1633838400,16.3,3.22,83,5.20 +1633842000,16.3,4.10,87,6.50 +1633845600,16.1,4.75,82,7.70 +1633849200,16.2,5.32,86,8.40 +1633852800,18.0,6.31,86,10.00 +1633856400,20.4,6.55,83,11.00 +1633860000,22.9,6.35,83,11.50 +1633863600,25.1,5.50,89,11.20 +1633867200,26.8,4.60,88,10.20 +1633870800,28.0,3.63,82,8.70 +1633874400,28.6,3.10,75,7.70 +1633878000,28.9,3.10,69,6.90 +1633881600,28.8,3.14,68,6.60 +1633885200,28.1,3.47,57,6.20 +1633888800,25.7,3.11,42,5.80 +1633892400,24.3,2.91,63,5.20 +1633896000,23.2,3.20,70,5.20 +1633899600,22.1,3.61,76,5.80 +1633903200,21.5,4.33,83,7.10 +1633906800,20.7,4.43,84,7.40 +1633910400,20.4,4.46,81,7.50 +1633914000,20.3,4.64,83,7.50 +1633917600,20.0,5.15,82,8.30 +1633921200,19.5,5.30,88,8.70 +1633924800,19.0,5.22,95,8.70 +1633928400,18.4,5.31,93,8.60 +1633932000,18.1,5.50,89,8.90 +1633935600,18.0,5.50,88,8.90 +1633939200,19.7,5.91,86,9.40 +1633942800,21.9,6.53,85,11.00 +1633946400,23.8,6.63,85,11.70 +1633950000,25.5,6.41,86,11.70 +1633953600,26.6,5.20,89,11.60 +1633957200,27.7,5.02,84,9.70 +1633960800,28.1,4.90,78,9.50 +1633964400,28.3,5.03,73,9.30 +1633968000,28.2,5.41,71,9.60 +1633971600,27.3,5.69,66,9.80 +1633975200,25.3,4.88,64,9.40 +1633978800,24.0,4.79,64,8.10 +1633982400,23.1,5.28,71,8.70 +1633986000,22.0,4.68,74,8.70 +1633989600,21.2,4.69,79,7.60 +1633993200,20.4,4.85,82,7.80 +1633996800,19.9,5.18,80,8.10 +1634000400,19.3,5.16,81,8.50 +1634004000,18.7,5.12,86,8.50 +1634007600,18.3,5.01,87,8.50 +1634011200,17.6,4.47,100,8.20 +1634014800,17.0,4.21,94,7.30 +1634018400,16.6,4.00,93,6.90 +1634022000,16.3,3.91,93,6.50 +1634025600,18.3,4.60,91,7.40 +1634029200,20.9,4.91,86,8.60 +1634032800,23.3,4.92,85,9.20 +1634036400,25.3,4.41,86,9.20 +1634040000,26.4,4.30,87,8.70 +1634043600,27.8,3.73,82,8.30 +1634047200,28.6,3.30,76,7.60 +1634050800,28.7,3.18,66,7.00 +1634054400,28.5,3.05,58,6.60 +1634058000,27.8,2.72,54,6.00 +1634061600,25.9,2.15,68,4.90 +1634065200,24.4,3.44,82,5.30 +1634068800,22.9,3.20,76,5.60 +1634072400,21.3,2.06,61,5.00 +1634076000,19.5,1.56,45,3.20 +1634079600,18.1,1.75,59,2.40 +1634083200,17.6,1.80,93,2.40 +1634086800,17.1,1.91,96,2.90 +1634090400,16.5,2.00,87,3.10 +1634094000,15.9,2.01,84,3.10 +1634097600,15.5,2.10,87,3.20 +1634101200,15.0,2.21,85,3.40 +1634104800,14.6,2.50,88,3.90 +1634108400,14.4,2.80,92,4.40 +1634112000,16.4,3.80,90,5.80 +1634115600,19.2,3.24,81,6.00 +1634119200,22.2,3.61,76,6.80 +1634122800,24.7,3.70,71,7.60 +1634126400,26.4,2.15,68,7.40 +1634130000,27.6,1.53,32,5.30 +1634133600,28.3,1.91,6,5.10 +1634137200,28.5,2.40,360,5.50 +1634140800,28.3,2.51,5,5.50 +1634144400,27.6,1.92,9,5.20 +1634148000,26.6,0.94,32,3.70 +1634151600,23.0,1.92,351,2.50 +1634155200,21.6,2.85,342,4.40 +1634158800,20.2,2.62,353,4.50 +1634162400,18.8,1.91,354,4.20 +1634166000,17.0,2.32,7,2.90 +1634169600,15.9,1.75,66,2.80 +1634173200,15.5,2.21,85,3.20 +1634176800,15.3,2.80,88,4.40 +1634180400,14.6,2.40,88,4.40 +1634184000,14.0,2.40,90,3.80 +1634187600,13.7,2.71,94,4.20 +1634191200,13.5,2.93,98,4.60 +1634194800,13.2,2.73,98,4.60 +1634198400,15.1,2.90,90,4.80 +1634202000,18.2,2.40,88,4.80 +1634205600,21.9,2.50,90,5.30 +1634209200,24.5,1.90,93,5.50 +1634212800,26.0,1.20,85,4.90 +1634216400,27.3,0.70,270,3.80 +1634220000,28.0,1.96,285,5.10 +1634223600,28.1,2.95,294,6.20 +1634227200,27.6,3.22,296,6.60 +1634230800,27.0,2.94,288,6.20 +1634234400,24.9,2.88,290,5.10 +1634238000,22.4,4.16,333,6.90 +1634241600,20.7,3.10,339,6.40 +1634245200,19.2,2.77,347,4.90 +1634248800,18.2,2.06,346,4.20 +1634252400,17.1,1.63,349,3.20 +1634256000,16.6,2.51,355,2.60 +1634259600,16.2,2.12,341,3.30 +1634263200,16.3,1.77,344,2.80 +1634266800,16.4,1.61,7,2.30 +1634270400,13.4,2.45,348,3.10 +1634274000,13.2,2.35,348,3.20 +1634277600,12.9,2.35,348,3.10 +1634281200,12.7,2.31,342,3.10 +1634284800,14.9,1.94,325,3.20 +1634288400,17.7,1.56,315,3.70 +1634292000,20.8,1.72,306,4.40 +1634295600,23.3,2.22,306,5.30 +1634299200,24.7,2.56,301,6.10 +1634302800,26.0,3.27,293,6.90 +1634306400,26.8,3.97,304,7.80 +1634310000,26.7,4.61,319,8.60 +1634313600,26.1,4.66,329,8.60 +1634317200,24.7,4.83,326,8.30 +1634320800,22.3,4.30,324,8.00 +1634324400,20.2,4.24,326,6.90 +1634328000,18.4,4.08,329,6.70 +1634331600,17.3,3.89,334,6.40 +1634335200,16.4,3.58,330,6.10 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2022.csv b/utilities/forecastAnalysis/storical/data/euroc/2022.csv new file mode 100644 index 0000000000000000000000000000000000000000..9abcf45fc80d5aeb2ea0cf3b1f073d7d759f1efc --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2022.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1665270000,19.4,2.51,331,5.40 +1665273600,17.9,2.86,335,3.80 +1665277200,16.8,3.71,346,5.60 +1665280800,15.7,4.18,343,6.50 +1665284400,14.8,3.96,344,6.80 +1665288000,14.4,3.61,346,6.10 +1665291600,14.2,3.57,342,5.70 +1665295200,13.9,3.05,337,5.60 +1665298800,13.7,2.47,346,4.70 +1665302400,15.5,3.31,335,5.60 +1665306000,17.9,2.88,340,6.20 +1665309600,20.7,3.83,327,7.30 +1665313200,22.7,3.61,326,7.70 +1665316800,25.4,1.39,300,7.40 +1665320400,26.9,2.95,294,6.30 +1665324000,27.0,4.19,310,8.20 +1665327600,24.8,5.58,324,9.80 +1665331200,23.2,5.69,326,9.90 +1665334800,21.7,4.52,335,9.60 +1665338400,20.7,3.97,326,7.80 +1665342000,19.7,4.55,320,7.60 +1665345600,18.5,4.17,316,7.60 +1665349200,17.3,4.10,317,7.00 +1665352800,16.1,3.26,313,6.60 +1665356400,15.2,2.42,308,5.20 +1665360000,16.3,1.51,278,5.40 +1665363600,16.0,2.06,299,3.00 +1665367200,15.2,1.88,295,3.40 +1665370800,15.3,2.22,306,4.30 +1665374400,15.3,2.02,303,3.40 +1665378000,13.8,1.66,303,3.10 +1665381600,14.4,0.40,180,2.10 +1665385200,13.8,0.71,188,1.40 +1665388800,15.6,1.00,180,2.50 +1665392400,17.1,2.21,198,4.50 +1665396000,18.0,2.34,230,5.80 +1665399600,19.1,1.00,264,5.30 +1665403200,23.6,2.44,235,5.10 +1665406800,23.9,2.28,241,5.90 +1665410400,23.9,2.44,235,5.60 +1665414000,18.7,6.22,244,11.20 +1665417600,18.9,3.54,254,10.30 +1665421200,19.2,3.23,248,6.40 +1665424800,18.7,1.55,285,5.50 +1665428400,17.6,1.20,265,2.50 +1665432000,17.3,1.17,329,1.60 +1665435600,17.8,0.45,297,1.60 +1665439200,17.6,0.00,180,0.60 +1665442800,16.5,1.30,23,1.60 +1665446400,16.7,1.02,79,1.60 +1665450000,16.6,0.81,240,1.40 +1665453600,16.5,0.45,117,1.00 +1665457200,15.1,1.49,42,2.00 +1665460800,15.1,0.86,36,1.90 +1665464400,14.8,1.13,45,2.00 +1665468000,15.0,1.39,60,3.30 +1665471600,15.0,1.97,66,3.20 +1665475200,15.7,1.92,51,3.80 +1665478800,18.0,1.48,62,4.00 +1665482400,20.6,1.66,33,4.30 +1665486000,22.9,2.12,19,5.00 +1665489600,25.3,2.10,3,5.60 +1665493200,26.1,2.20,3,5.20 +1665496800,26.6,1.96,345,5.20 +1665500400,26.7,3.00,323,5.60 +1665504000,26.5,3.77,328,6.90 +1665507600,23.4,6.74,328,10.60 +1665511200,21.6,5.46,334,10.90 +1665514800,20.3,4.83,336,8.60 +1665518400,19.3,4.22,338,7.60 +1665522000,18.4,3.92,341,6.70 +1665525600,17.6,3.67,343,6.20 +1665529200,17.0,3.57,342,5.80 +1665532800,17.2,3.52,345,5.60 +1665536400,16.7,3.16,342,5.50 +1665540000,16.2,2.79,345,4.90 +1665543600,16.0,2.71,356,4.60 +1665547200,15.6,2.31,355,4.30 +1665550800,15.2,1.61,353,3.60 +1665554400,14.9,1.66,33,2.60 +1665558000,15.3,1.70,62,2.70 +1665561600,17.4,2.44,55,4.10 +1665565200,20.0,2.10,65,4.30 +1665568800,22.6,2.84,51,5.70 +1665572400,24.7,3.14,53,6.30 +1665576000,26.5,2.48,40,6.40 +1665579600,27.2,3.00,30,6.20 +1665583200,27.5,2.86,25,6.30 +1665586800,27.8,2.84,10,6.00 +1665590400,27.9,2.92,354,5.80 +1665594000,26.8,4.05,327,6.30 +1665597600,23.3,5.72,333,9.20 +1665601200,20.7,5.14,333,9.10 +1665604800,19.1,4.87,341,8.10 +1665608400,18.3,4.52,335,7.60 +1665612000,17.6,4.08,343,7.30 +1665615600,17.1,3.45,338,6.40 +1665619200,16.4,4.59,344,5.30 +1665622800,15.9,4.46,351,7.50 +1665626400,15.5,3.82,354,7.00 +1665630000,15.2,3.45,350,6.00 +1665633600,15.0,3.98,348,6.00 +1665637200,14.6,3.72,354,6.20 +1665640800,14.5,3.45,350,5.80 +1665644400,14.5,2.73,352,5.30 +1665648000,15.8,2.42,353,4.40 +1665651600,18.3,1.92,351,4.40 +1665655200,21.3,2.38,345,5.30 +1665658800,23.8,2.53,342,5.80 +1665662400,25.3,2.20,330,6.00 +1665666000,26.5,2.92,322,6.10 +1665669600,26.9,3.44,324,6.90 +1665673200,26.8,4.34,331,7.90 +1665676800,25.8,4.84,330,8.40 +1665680400,23.3,5.99,332,9.90 +1665684000,20.9,5.11,329,9.90 +1665687600,18.9,5.86,335,9.20 +1665691200,17.6,5.73,335,9.20 +1665694800,16.7,5.41,341,9.10 +1665698400,16.3,4.79,337,8.60 +1665702000,16.1,4.35,337,7.50 +1665705600,15.8,3.96,339,6.90 +1665709200,15.6,3.51,340,6.20 +1665712800,15.4,3.48,342,5.50 +1665716400,15.2,3.42,345,5.70 +1665720000,15.0,2.83,352,5.40 +1665723600,14.8,2.10,360,4.50 +1665727200,14.2,1.73,10,3.30 +1665730800,14.0,1.51,8,2.40 +1665734400,15.7,2.21,18,4.00 +1665738000,18.2,1.58,18,3.90 +1665741600,20.9,1.43,12,4.10 +1665745200,23.5,1.50,360,4.40 +1665748800,25.5,1.99,342,4.80 +1665752400,27.1,2.25,328,5.50 +1665756000,27.9,2.77,319,6.00 +1665759600,28.1,3.33,327,6.60 +1665763200,27.6,4.00,328,7.10 +1665766800,25.5,5.83,329,9.30 +1665770400,21.7,6.00,330,10.40 +1665774000,19.8,5.19,332,9.40 +1665777600,18.3,5.19,332,8.20 +1665781200,17.0,4.88,334,8.10 +1665784800,16.1,4.20,335,7.50 +1665788400,15.5,3.44,334,6.60 +1665792000,15.0,3.62,332,5.30 +1665795600,14.8,3.94,336,6.30 +1665799200,14.7,3.76,335,6.20 +1665802800,14.5,3.68,338,6.00 +1665806400,14.3,2.88,340,5.80 +1665810000,13.8,2.19,336,4.60 +1665813600,13.5,2.30,326,3.60 +1665817200,13.4,2.62,317,4.10 +1665820800,14.9,2.91,311,5.20 +1665824400,17.1,2.41,318,5.00 +1665828000,20.0,2.78,322,5.90 +1665831600,22.6,3.75,316,7.30 +1665835200,22.7,2.90,314,7.70 +1665838800,23.5,3.04,314,6.60 +1665842400,23.7,3.39,315,7.00 +1665846000,23.6,3.36,307,7.20 +1665849600,23.6,3.22,296,6.80 +1665853200,23.1,2.79,285,6.30 +1665856800,21.7,2.12,278,5.10 +1665860400,20.2,2.30,272,3.50 +1665864000,18.8,2.30,304,3.70 +1665867600,17.6,1.50,323,3.60 +1665871200,16.4,1.20,312,2.20 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2023.csv b/utilities/forecastAnalysis/storical/data/euroc/2023.csv new file mode 100644 index 0000000000000000000000000000000000000000..47408cdd9138511759f409647544e35121181f22 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2023.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.40246,-8.328735,160.0,3600,Europe/Lisbon,WEST + +time,temperature_2m (°C),wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1696806000,23.6,2.06,14,3.70 +1696809600,21.8,2.98,50,3.20 +1696813200,21.6,1.91,96,3.70 +1696816800,20.3,2.00,90,3.00 +1696820400,19.4,2.14,101,3.30 +1696824000,19.0,2.37,118,4.20 +1696827600,18.3,2.01,63,3.60 +1696831200,17.7,2.12,71,3.10 +1696834800,17.6,2.55,79,3.80 +1696838400,20.2,3.40,88,5.30 +1696842000,24.0,2.90,88,5.40 +1696845600,27.7,3.20,92,6.40 +1696849200,30.7,3.00,88,6.50 +1696852800,32.2,2.50,74,6.30 +1696856400,33.6,2.24,63,5.90 +1696860000,34.4,2.13,49,5.60 +1696863600,34.9,2.06,39,5.50 +1696867200,34.7,2.10,25,5.10 +1696870800,34.0,1.53,58,4.70 +1696874400,32.3,1.68,107,3.10 +1696878000,29.3,2.62,317,3.20 +1696881600,26.9,3.70,341,6.30 +1696885200,26.0,3.99,338,6.00 +1696888800,24.5,4.27,339,6.90 +1696892400,23.5,3.42,345,6.60 +1696896000,21.9,2.77,347,5.30 +1696899600,21.0,1.75,13,4.20 +1696903200,19.9,1.82,9,2.60 +1696906800,18.7,2.19,24,2.80 +1696910400,17.8,2.10,65,2.80 +1696914000,17.7,1.90,108,2.60 +1696917600,17.5,2.32,97,3.90 +1696921200,17.1,2.21,85,3.60 +1696924800,19.9,2.90,92,4.60 +1696928400,23.4,2.43,81,4.80 +1696932000,27.1,2.80,90,5.70 +1696935600,29.7,2.93,98,6.50 +1696939200,30.8,2.02,99,6.30 +1696942800,32.2,1.40,90,5.20 +1696946400,33.0,0.89,63,4.60 +1696950000,33.6,0.63,18,4.00 +1696953600,33.6,0.72,326,3.40 +1696957200,32.9,0.51,11,3.00 +1696960800,30.9,1.60,356,1.90 +1696964400,28.6,3.83,327,5.80 +1696968000,26.2,3.40,346,6.20 +1696971600,25.1,2.94,342,5.30 +1696975200,24.0,2.73,336,4.50 +1696978800,22.4,1.62,248,4.20 +1696982400,21.3,2.28,337,2.50 +1696986000,20.1,2.61,4,3.40 +1696989600,19.5,2.45,348,3.20 +1696993200,18.7,2.20,3,3.00 +1696996800,17.7,1.88,25,2.80 +1697000400,16.7,1.58,72,2.20 +1697004000,16.4,1.53,101,2.30 +1697007600,15.9,2.04,101,2.90 +1697011200,18.4,3.10,90,5.10 +1697014800,22.5,2.42,97,5.10 +1697018400,26.4,2.53,108,5.50 +1697022000,28.9,1.56,135,5.50 +1697025600,29.4,0.90,180,4.50 +1697029200,30.9,1.39,249,4.50 +1697032800,31.7,2.80,272,6.30 +1697036400,31.8,3.13,277,6.90 +1697040000,31.7,2.60,272,6.60 +1697043600,31.4,2.52,263,5.50 +1697047200,29.6,2.69,285,4.70 +1697050800,26.4,4.31,338,6.60 +1697054400,24.7,3.63,352,6.60 +1697058000,23.5,2.93,352,5.60 +1697061600,22.4,2.09,343,4.50 +1697065200,21.3,1.87,344,3.10 +1697068800,20.6,2.02,9,2.70 +1697072400,19.9,1.77,317,2.40 +1697076000,20.1,1.43,348,2.20 +1697079600,19.1,1.03,61,1.70 +1697083200,16.8,1.73,100,2.00 +1697086800,16.6,1.58,108,2.30 +1697090400,15.7,1.61,120,2.60 +1697094000,15.6,1.92,118,2.70 +1697097600,18.4,3.04,117,4.90 +1697101200,22.4,1.63,101,4.80 +1697104800,26.0,1.33,103,4.00 +1697108400,28.8,0.81,150,4.00 +1697112000,30.6,1.92,171,4.90 +1697115600,32.3,2.82,203,6.20 +1697119200,32.8,3.61,228,7.30 +1697122800,32.8,3.83,237,7.60 +1697126400,32.5,3.62,246,7.50 +1697130000,31.6,4.24,255,7.10 +1697133600,29.5,4.54,256,7.40 +1697137200,27.3,4.59,250,7.60 +1697140800,25.5,3.09,245,7.10 +1697144400,24.0,1.98,225,4.70 +1697148000,23.1,1.92,219,3.10 +1697151600,22.2,1.97,210,2.90 +1697155200,21.0,2.66,200,4.10 +1697158800,20.7,2.35,192,4.50 +1697162400,19.9,1.80,180,3.60 +1697166000,19.9,1.48,152,3.20 +1697169600,19.1,2.64,115,3.60 +1697173200,18.9,1.41,188,4.50 +1697176800,18.6,1.20,180,2.40 +1697180400,18.9,2.20,231,3.30 +1697184000,19.4,2.15,202,3.60 +1697187600,20.5,1.90,198,3.50 +1697191200,22.3,2.55,191,4.80 +1697194800,23.3,3.13,173,5.60 +1697198400,24.9,2.44,161,5.60 +1697202000,25.8,4.12,151,7.10 +1697205600,26.7,4.33,199,7.40 +1697209200,26.0,5.02,215,8.60 +1697212800,25.6,4.53,202,8.40 +1697216400,24.8,4.30,192,7.50 +1697220000,24.0,5.95,205,9.00 +1697223600,21.4,5.20,218,10.50 +1697227200,20.4,3.34,189,8.40 +1697230800,19.8,4.06,170,6.10 +1697234400,19.3,4.30,179,7.30 +1697238000,19.1,4.66,195,7.40 +1697241600,17.3,3.04,224,7.50 +1697245200,17.3,2.90,136,4.90 +1697248800,17.2,2.30,124,4.90 +1697252400,16.1,1.53,122,3.80 +1697256000,15.4,1.78,142,2.30 +1697259600,15.2,1.70,130,2.50 +1697263200,16.2,1.25,119,2.50 +1697266800,17.1,0.36,56,1.70 +1697270400,17.6,1.10,5,2.40 +1697274000,18.6,1.41,352,3.40 +1697277600,20.0,1.00,360,3.70 +1697281200,21.8,0.81,353,3.90 +1697284800,22.6,0.71,262,3.80 +1697288400,23.9,0.41,284,3.60 +1697292000,24.6,0.98,246,3.70 +1697295600,25.0,1.30,270,4.10 +1697299200,25.2,1.04,287,4.20 +1697302800,24.8,0.64,321,3.60 +1697306400,24.1,0.67,333,2.30 +1697310000,22.9,0.63,252,1.10 +1697313600,21.6,0.85,249,1.30 +1697317200,20.4,2.00,307,3.10 +1697320800,19.2,1.92,332,3.10 +1697324400,18.3,1.12,333,2.90 +1697328000,17.8,1.12,280,1.60 +1697331600,18.0,0.73,344,1.30 +1697335200,18.0,1.00,96,1.60 +1697338800,17.7,1.36,126,2.30 +1697342400,17.3,1.50,127,2.30 +1697346000,16.4,1.30,148,2.30 +1697349600,16.0,1.56,135,2.30 +1697353200,16.0,1.86,144,3.00 +1697356800,17.0,1.00,233,3.20 +1697360400,18.1,1.73,170,3.30 +1697364000,20.0,2.12,188,4.50 +1697367600,20.3,3.29,200,5.80 +1697371200,19.7,3.76,155,6.40 +1697374800,19.0,3.94,156,6.20 +1697378400,19.3,3.05,148,6.60 +1697382000,19.5,3.04,107,5.20 +1697385600,20.3,3.06,128,6.10 +1697389200,20.6,2.02,160,5.20 +1697392800,18.9,1.63,169,3.60 +1697396400,18.1,1.63,169,2.70 +1697400000,17.7,1.80,177,2.60 +1697403600,17.7,1.71,201,2.70 +1697407200,17.1,1.98,225,2.70 diff --git a/utilities/forecastAnalysis/storical/data/euroc/2024.csv b/utilities/forecastAnalysis/storical/data/euroc/2024.csv new file mode 100644 index 0000000000000000000000000000000000000000..4d16890381854b4021bdba567caf143748dd43bc --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/euroc/2024.csv @@ -0,0 +1,172 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +39.402458,-8.328735,160.0,3600,Europe/Lisbon,GMT+1 + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1728428400,7.57,201,12.40 +1728432000,7.88,195,12.40 +1728435600,8.45,191,13.30 +1728439200,9.28,194,14.80 +1728442800,9.71,198,15.30 +1728446400,10.12,200,16.10 +1728450000,10.61,202,16.80 +1728453600,10.23,211,18.80 +1728457200,10.43,217,18.10 +1728460800,9.05,225,18.00 +1728464400,10.61,236,17.50 +1728468000,10.68,241,17.30 +1728471600,11.23,246,17.90 +1728475200,10.32,256,18.10 +1728478800,8.09,281,13.40 +1728482400,7.03,286,13.00 +1728486000,7.25,280,11.60 +1728489600,7.18,281,12.40 +1728493200,6.55,284,11.60 +1728496800,5.22,288,10.40 +1728500400,3.43,283,8.20 +1728504000,2.56,276,5.50 +1728507600,1.92,263,4.10 +1728511200,1.62,248,3.00 +1728514800,1.35,239,2.50 +1728518400,1.35,228,2.10 +1728522000,1.52,221,2.30 +1728525600,1.37,237,2.30 +1728529200,1.65,256,2.00 +1728532800,0.86,260,2.10 +1728536400,0.57,218,1.20 +1728540000,0.60,185,0.90 +1728543600,0.60,175,1.10 +1728547200,1.43,155,2.90 +1728550800,1.39,150,3.50 +1728554400,1.35,158,3.90 +1728558000,1.19,202,3.80 +1728561600,1.52,197,4.10 +1728565200,0.70,86,3.20 +1728568800,1.00,108,3.50 +1728572400,0.83,155,3.40 +1728576000,1.46,188,3.20 +1728579600,2.78,198,4.50 +1728583200,3.16,235,5.00 +1728586800,1.88,248,5.00 +1728590400,0.51,299,2.80 +1728594000,0.45,90,1.10 +1728597600,1.43,126,2.10 +1728601200,2.75,151,4.10 +1728604800,3.07,161,4.90 +1728608400,2.97,144,4.60 +1728612000,3.64,122,5.60 +1728615600,3.69,123,6.00 +1728619200,4.22,121,6.50 +1728622800,5.16,128,8.20 +1728626400,5.97,116,9.20 +1728630000,6.31,117,9.90 +1728633600,7.14,127,11.50 +1728637200,6.65,133,11.20 +1728640800,7.43,147,11.80 +1728644400,6.82,160,12.90 +1728648000,6.25,179,12.40 +1728651600,7.00,187,13.10 +1728655200,7.16,182,13.50 +1728658800,7.88,191,12.90 +1728662400,8.13,190,13.80 +1728666000,6.58,200,12.90 +1728669600,7.01,201,11.50 +1728673200,6.96,201,11.70 +1728676800,6.23,199,11.30 +1728680400,5.51,192,10.10 +1728684000,5.93,196,9.70 +1728687600,6.01,200,10.40 +1728691200,4.69,191,9.50 +1728694800,4.57,190,8.00 +1728698400,4.51,195,7.90 +1728702000,6.28,197,9.90 +1728705600,4.10,180,9.80 +1728709200,6.96,197,11.00 +1728712800,5.41,196,11.30 +1728716400,3.46,184,8.60 +1728720000,4.48,191,7.40 +1728723600,3.94,172,7.10 +1728727200,4.35,178,8.60 +1728730800,4.01,184,8.50 +1728734400,4.45,172,8.00 +1728738000,3.56,152,6.70 +1728741600,3.53,142,8.30 +1728745200,4.18,148,7.50 +1728748800,3.45,204,7.70 +1728752400,1.27,189,5.70 +1728756000,1.36,107,2.30 +1728759600,2.53,112,4.10 +1728763200,3.65,91,5.70 +1728766800,3.58,102,6.00 +1728770400,3.90,99,6.20 +1728774000,4.49,107,7.10 +1728777600,4.54,107,7.60 +1728781200,3.91,106,8.60 +1728784800,3.32,97,6.40 +1728788400,4.32,96,6.90 +1728792000,4.35,92,7.20 +1728795600,4.60,91,7.30 +1728799200,4.55,89,7.40 +1728802800,4.35,91,7.10 +1728806400,4.44,107,7.10 +1728810000,5.83,126,9.50 +1728813600,5.89,130,9.80 +1728817200,5.53,127,9.80 +1728820800,5.52,136,9.40 +1728824400,3.89,135,7.90 +1728828000,3.93,149,7.10 +1728831600,3.45,163,7.00 +1728835200,3.57,127,5.80 +1728838800,4.01,113,6.50 +1728842400,3.75,103,6.50 +1728846000,3.58,102,5.90 +1728849600,4.05,92,6.20 +1728853200,4.03,97,6.30 +1728856800,4.12,104,6.60 +1728860400,3.68,112,6.40 +1728864000,2.80,112,5.70 +1728867600,2.11,97,3.70 +1728871200,2.26,95,3.50 +1728874800,2.35,94,3.50 +1728878400,3.20,104,4.90 +1728882000,3.24,99,5.10 +1728885600,3.61,100,5.50 +1728889200,3.59,99,5.90 +1728892800,3.73,97,6.00 +1728896400,3.06,84,6.00 +1728900000,2.99,80,5.60 +1728903600,3.56,93,6.60 +1728907200,3.86,107,7.10 +1728910800,3.49,114,7.70 +1728914400,3.27,119,7.50 +1728918000,3.67,110,6.40 +1728921600,2.50,168,6.40 +1728925200,2.38,260,4.70 +1728928800,1.17,280,4.10 +1728932400,0.49,135,1.60 +1728936000,1.01,171,1.50 +1728939600,1.55,165,2.40 +1728943200,1.32,171,2.40 +1728946800,1.68,170,2.40 +1728950400,1.78,170,2.80 +1728954000,1.74,139,2.80 +1728957600,1.66,134,2.70 +1728961200,1.74,131,2.90 +1728964800,2.57,143,4.00 +1728968400,3.47,134,5.50 +1728972000,3.82,132,6.20 +1728975600,3.90,139,6.20 +1728979200,5.82,145,8.90 +1728982800,6.70,142,10.90 +1728986400,6.21,145,11.40 +1728990000,5.82,140,10.00 +1728993600,7.36,154,11.80 +1728997200,4.84,145,9.50 +1729000800,5.74,142,9.50 +1729004400,5.99,145,10.70 +1729008000,5.86,121,10.30 +1729011600,6.56,120,10.30 +1729015200,8.29,120,13.00 +1729018800,10.12,132,16.20 +1729022400,6.08,141,15.90 +1729026000,6.67,169,10.60 +1729029600,5.80,197,10.70 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2017.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2017.csv new file mode 100644 index 0000000000000000000000000000000000000000..9fe04b4975997946b2e86c215ccde77dfd945a46 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2017.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1505167200,1.24,284,10.80 +1505170800,1.57,297,11.10 +1505174400,2.00,270,11.00 +1505178000,1.32,279,11.10 +1505181600,1.84,283,10.70 +1505185200,1.96,285,11.00 +1505188800,1.87,286,10.90 +1505192400,1.90,288,9.90 +1505196000,1.90,270,9.50 +1505199600,1.58,215,9.80 +1505203200,2.69,222,12.10 +1505206800,3.26,230,13.60 +1505210400,3.56,232,14.70 +1505214000,3.26,227,14.50 +1505217600,3.61,228,15.30 +1505221200,3.26,220,14.20 +1505224800,3.41,220,13.80 +1505228400,3.61,228,14.80 +1505232000,2.92,218,14.60 +1505235600,1.66,213,13.70 +1505239200,1.52,203,11.80 +1505242800,1.70,208,11.70 +1505246400,1.00,264,11.40 +1505250000,1.04,253,9.90 +1505253600,1.30,270,10.00 +1505257200,1.14,285,9.70 +1505260800,1.17,290,8.90 +1505264400,0.81,300,8.40 +1505268000,0.94,302,8.00 +1505271600,0.76,293,8.00 +1505275200,0.63,288,7.00 +1505278800,0.73,286,5.50 +1505282400,1.03,299,4.90 +1505286000,0.32,162,4.60 +1505289600,0.95,162,4.10 +1505293200,1.25,151,4.90 +1505296800,1.64,142,5.70 +1505300400,1.80,146,6.60 +1505304000,1.70,135,6.50 +1505307600,2.69,149,8.30 +1505311200,3.29,160,10.50 +1505314800,2.69,165,10.60 +1505318400,2.33,170,8.50 +1505322000,1.32,171,7.30 +1505325600,1.58,215,5.70 +1505329200,1.22,261,5.50 +1505332800,1.02,281,4.90 +1505336400,0.95,288,4.80 +1505340000,0.85,291,4.90 +1505343600,0.73,286,4.90 +1505347200,1.40,270,4.90 +1505350800,1.02,281,5.20 +1505354400,1.02,281,5.00 +1505358000,0.92,283,5.10 +1505361600,0.95,288,5.10 +1505365200,0.85,291,5.10 +1505368800,1.12,280,5.00 +1505372400,1.08,236,5.00 +1505376000,1.30,212,5.10 +1505379600,1.78,218,6.40 +1505383200,1.78,218,6.60 +1505386800,1.78,218,6.60 +1505390400,1.93,201,7.00 +1505394000,2.16,214,7.80 +1505397600,2.26,225,8.30 +1505401200,2.33,223,8.80 +1505404800,2.13,221,9.10 +1505408400,1.22,235,8.90 +1505412000,1.33,257,8.30 +1505415600,1.30,266,8.30 +1505419200,1.60,274,8.50 +1505422800,1.71,277,8.80 +1505426400,1.63,281,8.50 +1505430000,1.62,292,8.20 +1505433600,1.52,293,8.20 +1505437200,1.26,288,8.00 +1505440800,1.08,292,6.50 +1505444400,0.76,293,5.70 +1505448000,0.67,297,4.70 +1505451600,0.67,297,4.10 +1505455200,1.21,294,4.30 +1505458800,0.61,261,4.40 +1505462400,1.02,169,4.10 +1505466000,1.92,171,6.70 +1505469600,2.20,180,8.10 +1505473200,2.38,195,8.50 +1505476800,2.72,197,10.20 +1505480400,2.92,211,10.30 +1505484000,2.90,224,10.30 +1505487600,2.41,228,10.00 +1505491200,1.70,208,8.80 +1505494800,1.25,209,7.60 +1505498400,1.44,236,7.60 +1505502000,1.26,252,7.70 +1505505600,1.10,270,7.90 +1505509200,1.10,270,8.20 +1505512800,1.20,265,9.00 +1505516400,1.20,265,9.80 +1505520000,1.81,264,10.60 +1505523600,1.22,261,11.40 +1505527200,1.26,252,11.40 +1505530800,1.26,252,11.80 +1505534400,1.49,250,12.70 +1505538000,1.53,259,12.90 +1505541600,2.15,242,13.90 +1505545200,2.15,208,14.30 +1505548800,2.87,209,15.10 +1505552400,3.45,210,15.60 +1505556000,4.28,217,17.20 +1505559600,4.08,211,17.90 +1505563200,4.08,211,17.80 +1505566800,4.25,207,17.50 +1505570400,3.16,215,17.80 +1505574000,3.31,205,15.40 +1505577600,3.01,201,15.50 +1505581200,1.79,207,15.70 +1505584800,1.70,230,13.30 +1505588400,1.91,227,13.20 +1505592000,2.27,221,14.60 +1505595600,1.77,227,14.70 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2018.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2018.csv new file mode 100644 index 0000000000000000000000000000000000000000..6cbc37268de7670deb5f0a7ff2141675e65e5be1 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2018.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1536703200,1.63,317,7.80 +1536706800,1.84,315,8.60 +1536710400,1.91,317,8.90 +1536714000,1.98,315,9.70 +1536717600,1.98,315,9.00 +1536721200,2.06,309,8.70 +1536724800,2.13,311,8.90 +1536728400,2.27,311,9.10 +1536732000,2.26,315,9.10 +1536735600,1.75,347,8.70 +1536739200,2.02,33,7.80 +1536742800,1.84,45,7.80 +1536746400,1.86,54,7.40 +1536750000,1.84,68,7.20 +1536753600,2.31,72,7.30 +1536757200,2.61,86,9.10 +1536760800,2.35,102,9.20 +1536764400,2.02,110,8.20 +1536768000,1.24,104,6.70 +1536771600,1.41,98,4.30 +1536775200,0.14,315,3.50 +1536778800,0.42,315,2.80 +1536782400,1.27,315,4.60 +1536786000,1.14,308,5.00 +1536789600,1.22,305,5.20 +1536793200,1.42,309,5.70 +1536796800,1.50,307,5.70 +1536800400,0.78,310,5.20 +1536804000,0.92,311,4.10 +1536807600,0.72,304,4.10 +1536811200,0.86,306,3.80 +1536814800,0.94,302,3.80 +1536818400,1.08,304,4.40 +1536822000,1.06,311,4.50 +1536825600,0.54,22,3.90 +1536829200,0.82,104,3.30 +1536832800,0.64,129,3.30 +1536836400,0.85,135,3.40 +1536840000,1.97,156,5.00 +1536843600,1.34,207,7.00 +1536847200,0.95,198,4.70 +1536850800,0.57,225,4.10 +1536854400,0.41,76,2.20 +1536858000,1.02,79,2.60 +1536861600,0.92,49,3.20 +1536865200,0.51,349,3.00 +1536868800,0.89,333,2.80 +1536872400,0.71,315,2.80 +1536876000,0.78,310,2.30 +1536879600,0.54,338,2.50 +1536883200,1.80,304,2.50 +1536886800,1.08,304,5.20 +1536890400,1.06,311,4.40 +1536894000,0.99,315,4.30 +1536897600,0.99,315,4.30 +1536901200,1.00,307,4.30 +1536904800,1.36,306,4.30 +1536908400,0.45,333,4.30 +1536912000,0.51,101,3.30 +1536915600,0.95,108,4.60 +1536919200,1.35,132,6.20 +1536922800,1.78,142,6.90 +1536926400,2.15,118,6.90 +1536930000,2.12,135,7.70 +1536933600,1.84,131,7.80 +1536937200,1.56,135,6.50 +1536940800,1.70,135,6.50 +1536944400,1.12,117,4.80 +1536948000,0.28,135,2.50 +1536951600,0.92,311,3.30 +1536955200,1.36,306,4.40 +1536958800,1.36,306,4.70 +1536962400,1.22,305,4.80 +1536966000,1.14,308,4.90 +1536969600,2.06,309,4.90 +1536973200,1.42,309,6.40 +1536976800,1.56,315,6.20 +1536980400,1.50,307,6.30 +1536984000,1.42,309,6.00 +1536987600,1.28,309,5.70 +1536991200,1.42,309,5.40 +1536994800,0.67,333,4.90 +1536998400,0.61,99,3.20 +1537002000,1.36,126,5.50 +1537005600,1.84,135,6.90 +1537009200,2.26,135,7.60 +1537012800,1.84,119,7.90 +1537016400,1.39,150,6.50 +1537020000,1.46,164,5.10 +1537023600,1.20,175,5.60 +1537027200,0.72,146,4.20 +1537030800,0.95,162,2.70 +1537034400,0.51,349,2.20 +1537038000,0.22,297,1.30 +1537041600,0.36,304,1.50 +1537045200,0.64,309,2.10 +1537048800,0.86,324,2.30 +1537052400,0.71,315,2.40 +1537056000,1.03,299,2.50 +1537059600,0.86,306,3.40 +1537063200,0.72,304,3.40 +1537066800,0.72,304,3.50 +1537070400,0.72,304,3.40 +1537074000,0.78,310,3.10 +1537077600,0.72,304,3.00 +1537081200,0.45,63,2.80 +1537084800,1.17,121,4.60 +1537088400,1.72,144,6.20 +1537092000,2.15,158,7.70 +1537095600,2.15,152,7.80 +1537099200,1.64,142,7.80 +1537102800,1.89,148,6.80 +1537106400,1.92,141,7.00 +1537110000,1.86,144,6.70 +1537113600,1.58,145,6.40 +1537117200,1.39,150,5.50 +1537120800,1.52,157,4.80 +1537124400,0.32,288,3.90 +1537128000,1.14,285,2.80 +1537131600,1.30,293,3.40 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2019.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2019.csv new file mode 100644 index 0000000000000000000000000000000000000000..81e3ca555f2be5c4d03e25399ced2bed75cefce3 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2019.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1568239200,1.64,308,6.50 +1568242800,1.50,307,6.50 +1568246400,1.78,308,6.10 +1568250000,1.56,310,6.90 +1568253600,1.42,309,6.40 +1568257200,1.42,309,6.00 +1568260800,1.50,307,6.10 +1568264400,1.64,308,6.30 +1568268000,2.00,307,6.40 +1568271600,0.92,311,6.10 +1568275200,0.36,56,4.30 +1568278800,0.85,111,4.20 +1568282400,1.24,104,5.30 +1568286000,1.40,90,6.00 +1568289600,2.20,39,7.60 +1568293200,2.28,38,8.50 +1568296800,2.33,31,8.90 +1568300400,2.52,34,9.20 +1568304000,2.44,35,9.30 +1568307600,1.65,14,8.90 +1568311200,2.01,354,9.50 +1568314800,2.28,337,10.30 +1568318400,2.42,336,10.60 +1568322000,2.42,330,10.30 +1568325600,2.58,324,10.10 +1568329200,2.78,322,10.40 +1568332800,2.48,320,10.40 +1568336400,2.69,318,9.80 +1568340000,2.69,318,10.10 +1568343600,2.90,316,10.20 +1568347200,2.97,318,10.50 +1568350800,3.05,319,10.70 +1568354400,3.24,326,10.80 +1568358000,2.65,349,10.70 +1568361600,2.72,17,10.20 +1568365200,2.75,33,10.10 +1568368800,3.05,41,11.20 +1568372400,2.97,45,11.30 +1568376000,3.05,49,10.90 +1568379600,2.84,39,11.10 +1568383200,3.11,48,10.80 +1568386800,2.77,41,10.80 +1568390400,2.36,36,9.70 +1568394000,1.13,45,8.30 +1568397600,1.50,360,7.20 +1568401200,1.46,344,7.50 +1568404800,1.39,330,7.50 +1568408400,1.50,323,7.40 +1568412000,1.70,320,7.80 +1568415600,1.92,321,8.20 +1568419200,2.13,319,8.30 +1568422800,2.20,321,9.10 +1568426400,2.28,322,9.10 +1568430000,2.36,324,9.40 +1568433600,2.22,324,9.50 +1568437200,2.06,321,9.30 +1568440800,2.16,326,8.50 +1568444400,2.00,357,8.10 +1568448000,1.99,18,7.90 +1568451600,1.92,39,7.70 +1568455200,1.94,55,7.60 +1568458800,2.06,67,7.80 +1568462400,2.34,70,7.80 +1568466000,2.40,73,8.50 +1568469600,2.51,67,8.90 +1568473200,2.28,61,8.70 +1568476800,2.08,55,7.90 +1568480400,1.20,42,7.00 +1568484000,1.41,352,7.20 +1568487600,1.75,336,8.00 +1568491200,1.84,331,8.20 +1568494800,1.86,324,8.20 +1568498400,2.00,323,8.70 +1568502000,2.00,323,8.70 +1568505600,1.98,319,8.40 +1568509200,2.00,323,8.70 +1568512800,2.06,321,8.50 +1568516400,1.91,317,8.40 +1568520000,1.86,324,7.70 +1568523600,1.80,326,7.70 +1568527200,2.02,327,7.70 +1568530800,1.60,356,7.30 +1568534400,1.44,34,6.40 +1568538000,1.02,79,5.90 +1568541600,1.48,118,5.70 +1568545200,2.00,127,7.20 +1568548800,2.51,119,8.20 +1568552400,2.59,118,9.10 +1568556000,2.78,120,9.30 +1568559600,2.61,122,9.30 +1568563200,1.66,123,8.30 +1568566800,1.12,153,5.00 +1568570400,0.78,220,2.80 +1568574000,1.14,285,3.00 +1568577600,1.17,301,3.90 +1568581200,1.00,307,4.10 +1568584800,0.94,302,4.10 +1568588400,0.94,302,4.00 +1568592000,1.53,302,3.90 +1568595600,0.94,302,4.40 +1568599200,0.94,302,4.10 +1568602800,1.08,304,4.80 +1568606400,1.22,305,5.30 +1568610000,1.36,306,5.50 +1568613600,1.53,302,5.50 +1568617200,0.78,310,5.00 +1568620800,0.36,124,3.10 +1568624400,1.39,150,5.40 +1568628000,2.06,157,7.50 +1568631600,2.21,162,8.00 +1568635200,2.51,157,8.70 +1568638800,2.12,161,8.70 +1568642400,2.32,173,8.80 +1568646000,2.50,178,8.40 +1568649600,2.00,180,8.20 +1568653200,1.32,171,6.80 +1568656800,1.30,212,4.70 +1568660400,1.30,266,3.90 +1568664000,1.33,283,4.40 +1568667600,1.39,291,4.60 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2020.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2020.csv new file mode 100644 index 0000000000000000000000000000000000000000..1afdf7ef023ac9b8e813ffd188409eb6ea6cb3c5 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2020.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1599861600,1.57,333,6.20 +1599865200,1.70,332,5.80 +1599868800,2.33,329,5.80 +1599872400,1.79,333,6.60 +1599876000,1.84,338,6.30 +1599879600,1.93,339,6.50 +1599883200,1.99,342,6.80 +1599886800,2.06,346,7.10 +1599890400,1.20,360,7.00 +1599894000,1.58,35,6.80 +1599897600,1.97,66,8.00 +1599901200,2.20,90,8.60 +1599904800,2.26,103,8.70 +1599908400,2.47,111,9.10 +1599912000,2.40,90,9.30 +1599915600,2.35,78,8.70 +1599919200,2.15,68,8.50 +1599922800,2.06,61,7.70 +1599926400,1.80,56,7.30 +1599930000,1.12,27,6.90 +1599933600,1.30,356,7.00 +1599937200,1.62,338,7.80 +1599940800,1.48,332,7.80 +1599944400,1.52,337,7.40 +1599948000,1.93,339,7.50 +1599951600,2.16,347,7.70 +1599955200,2.97,340,7.70 +1599958800,1.66,335,9.50 +1599962400,1.75,329,8.20 +1599966000,1.84,331,8.90 +1599969600,1.88,335,9.30 +1599973200,1.84,338,9.40 +1599976800,2.02,340,9.50 +1599980400,2.63,9,10.10 +1599984000,3.04,27,11.10 +1599987600,3.19,41,11.60 +1599991200,3.06,52,11.60 +1599994800,2.87,61,11.10 +1599998400,3.30,76,10.40 +1600002000,3.14,68,11.10 +1600005600,2.80,55,10.80 +1600009200,2.76,46,10.10 +1600012800,2.19,43,9.40 +1600016400,1.49,20,7.80 +1600020000,1.63,349,7.50 +1600023600,1.84,338,8.00 +1600027200,1.94,325,8.20 +1600030800,2.34,320,8.60 +1600034400,2.33,317,8.60 +1600038000,2.40,315,8.50 +1600041600,2.33,313,8.50 +1600045200,2.33,313,8.20 +1600048800,2.40,315,8.40 +1600052400,2.40,315,8.70 +1600056000,2.33,313,8.60 +1600059600,2.27,311,8.40 +1600063200,2.28,322,8.10 +1600066800,2.10,357,8.00 +1600070400,2.56,31,9.00 +1600074000,2.69,48,9.40 +1600077600,2.83,58,10.10 +1600081200,2.38,68,10.00 +1600084800,2.42,60,8.70 +1600088400,2.08,55,8.50 +1600092000,2.41,48,8.60 +1600095600,2.62,47,9.60 +1600099200,2.20,51,9.20 +1600102800,1.08,34,7.80 +1600106400,1.20,5,6.30 +1600110000,1.33,347,6.90 +1600113600,1.43,335,6.80 +1600117200,1.53,328,6.30 +1600120800,1.35,318,5.50 +1600124400,1.20,318,4.90 +1600128000,2.56,321,5.30 +1600131600,1.49,318,6.30 +1600135200,1.42,321,4.90 +1600138800,1.75,329,5.00 +1600142400,1.72,324,5.00 +1600146000,1.49,318,4.90 +1600149600,0.92,319,4.40 +1600153200,1.12,27,4.10 +1600156800,1.36,73,5.30 +1600160400,1.50,86,5.90 +1600164000,1.73,100,6.60 +1600167600,2.10,115,7.40 +1600171200,3.11,96,8.20 +1600174800,2.72,96,10.60 +1600178400,1.55,75,9.50 +1600182000,2.10,90,7.30 +1600185600,0.54,22,7.20 +1600189200,0.41,14,2.80 +1600192800,0.86,324,2.40 +1600196400,1.28,321,3.40 +1600200000,1.13,315,3.50 +1600203600,1.06,311,3.50 +1600207200,1.06,311,3.40 +1600210800,1.13,315,3.10 +1600214400,1.27,315,2.80 +1600218000,1.35,312,3.40 +1600221600,1.35,312,3.40 +1600225200,1.35,312,3.40 +1600228800,1.35,318,3.60 +1600232400,1.35,318,3.90 +1600236000,1.00,323,3.90 +1600239600,1.17,20,4.70 +1600243200,1.53,79,6.00 +1600246800,2.09,107,7.60 +1600250400,2.16,124,8.00 +1600254000,2.20,129,8.20 +1600257600,1.65,104,8.20 +1600261200,1.90,93,6.60 +1600264800,2.32,83,7.60 +1600268400,1.71,69,7.80 +1600272000,1.08,56,5.80 +1600275600,1.17,31,4.10 +1600279200,1.04,343,4.70 +1600282800,1.22,325,5.40 +1600286400,1.22,325,5.60 +1600290000,1.28,321,5.60 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2021.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2021.csv new file mode 100644 index 0000000000000000000000000000000000000000..c76d4d1e626d4bb89f3e6d5f2357c28c627a35a6 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2021.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1631397600,1.63,313,7.10 +1631401200,1.70,310,6.80 +1631404800,1.84,311,6.70 +1631408400,1.78,308,6.80 +1631412000,1.58,305,6.30 +1631415600,1.36,306,5.80 +1631419200,1.36,306,5.40 +1631422800,1.35,312,5.40 +1631426400,1.50,307,5.20 +1631430000,1.04,343,4.90 +1631433600,0.85,69,4.00 +1631437200,1.12,100,4.80 +1631440800,1.58,125,6.10 +1631444400,1.98,131,7.40 +1631448000,2.21,108,8.20 +1631451600,2.75,109,9.50 +1631455200,2.60,113,9.70 +1631458800,1.70,87,8.80 +1631462400,1.39,69,5.90 +1631466000,1.40,86,4.40 +1631469600,0.71,45,3.40 +1631473200,0.36,304,1.60 +1631476800,1.00,307,2.90 +1631480400,0.86,306,3.40 +1631484000,0.72,304,3.70 +1631487600,0.72,304,3.90 +1631491200,1.44,304,5.20 +1631494800,1.08,304,5.00 +1631498400,1.17,301,5.00 +1631502000,1.22,305,5.10 +1631505600,1.30,302,5.30 +1631509200,1.30,302,5.50 +1631512800,1.80,304,5.80 +1631516400,0.92,311,5.70 +1631520000,0.20,180,3.80 +1631523600,0.90,180,4.20 +1631527200,1.43,192,5.60 +1631530800,1.77,196,6.80 +1631534400,0.85,135,7.10 +1631538000,1.60,94,6.20 +1631541600,2.02,99,7.10 +1631545200,1.93,111,7.20 +1631548800,1.30,113,6.50 +1631552400,1.71,111,4.80 +1631556000,1.48,62,5.30 +1631559600,1.51,8,4.30 +1631563200,0.71,315,3.70 +1631566800,1.22,305,4.10 +1631570400,1.30,302,5.00 +1631574000,1.17,301,5.30 +1631577600,1.50,307,5.90 +1631581200,1.53,302,6.40 +1631584800,1.86,306,7.30 +1631588400,1.78,308,7.40 +1631592000,1.78,308,7.50 +1631595600,1.78,308,7.50 +1631599200,2.00,307,7.10 +1631602800,1.35,312,7.00 +1631606400,0.67,333,5.10 +1631610000,0.22,27,3.90 +1631613600,0.41,104,3.40 +1631617200,0.67,117,4.10 +1631620800,0.70,90,4.00 +1631624400,1.14,105,4.90 +1631628000,2.24,117,8.00 +1631631600,2.19,114,8.20 +1631635200,1.35,132,7.70 +1631638800,1.58,145,5.20 +1631642400,0.86,126,4.80 +1631646000,0.50,307,2.40 +1631649600,1.25,299,4.40 +1631653200,1.00,307,4.50 +1631656800,1.17,301,5.00 +1631660400,1.58,305,6.10 +1631664000,1.28,309,6.60 +1631667600,1.36,306,5.40 +1631671200,1.08,304,5.30 +1631674800,0.78,310,4.70 +1631678400,0.78,310,4.00 +1631682000,0.98,294,3.70 +1631685600,0.76,293,3.90 +1631689200,0.61,261,3.90 +1631692800,0.57,225,3.60 +1631696400,1.17,211,4.90 +1631700000,1.21,204,5.00 +1631703600,0.89,207,5.00 +1631707200,0.71,188,4.80 +1631710800,1.55,255,6.30 +1631714400,1.43,282,8.10 +1631718000,0.58,211,8.60 +1631721600,1.17,200,5.00 +1631725200,1.42,219,5.20 +1631728800,1.33,257,5.60 +1631732400,1.46,286,7.60 +1631736000,1.49,312,8.90 +1631739600,1.25,299,7.80 +1631743200,0.81,277,7.90 +1631746800,1.17,290,8.10 +1631750400,1.49,290,8.50 +1631754000,1.12,280,9.30 +1631757600,1.04,287,8.70 +1631761200,0.89,297,9.00 +1631764800,0.91,276,8.60 +1631768400,1.00,276,8.20 +1631772000,1.53,281,7.30 +1631775600,1.06,221,7.80 +1631779200,1.12,170,6.70 +1631782800,1.80,177,7.60 +1631786400,2.41,185,9.50 +1631790000,2.96,192,11.40 +1631793600,2.73,246,13.20 +1631797200,2.06,209,14.40 +1631800800,2.78,240,16.80 +1631804400,1.72,216,11.50 +1631808000,1.62,202,9.80 +1631811600,1.44,214,10.50 +1631815200,1.42,231,11.10 +1631818800,1.41,225,11.50 +1631822400,1.26,252,11.40 +1631826000,1.36,253,11.60 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2022.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2022.csv new file mode 100644 index 0000000000000000000000000000000000000000..840593e4d1e6418e52a20c57627efa97982e0ae5 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2022.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1662933600,1.41,315,6.80 +1662937200,1.56,310,6.60 +1662940800,1.77,313,7.10 +1662944400,1.98,311,7.10 +1662948000,1.98,311,7.00 +1662951600,2.05,313,7.20 +1662955200,2.05,313,7.20 +1662958800,1.84,311,7.20 +1662962400,2.05,313,6.70 +1662966000,1.40,360,6.70 +1662969600,1.63,47,6.00 +1662973200,1.39,60,6.10 +1662976800,1.22,81,5.60 +1662980400,1.20,85,5.20 +1662984000,1.20,42,5.30 +1662987600,1.49,42,5.90 +1662991200,2.69,59,9.00 +1662994800,2.35,78,9.60 +1662998400,2.28,105,7.50 +1663002000,1.00,96,6.40 +1663005600,0.41,346,3.60 +1663009200,0.28,315,3.00 +1663012800,0.99,315,4.10 +1663016400,0.92,311,4.50 +1663020000,1.00,307,4.90 +1663023600,1.03,299,4.90 +1663027200,1.03,299,4.70 +1663030800,0.94,302,4.90 +1663034400,1.17,301,5.50 +1663038000,1.44,304,6.40 +1663041600,1.58,305,7.20 +1663045200,1.70,310,7.70 +1663048800,2.06,309,7.80 +1663052400,1.35,318,7.50 +1663056000,0.54,338,6.00 +1663059600,0.32,72,4.40 +1663063200,0.22,117,3.70 +1663066800,0.64,141,3.60 +1663070400,1.30,122,4.50 +1663074000,1.56,130,6.00 +1663077600,1.75,149,5.90 +1663081200,2.19,156,7.00 +1663084800,1.89,148,7.00 +1663088400,1.49,160,6.10 +1663092000,1.78,218,5.20 +1663095600,1.30,270,5.40 +1663099200,1.46,286,6.40 +1663102800,1.53,302,6.70 +1663106400,1.44,304,6.60 +1663110000,1.36,306,6.40 +1663113600,1.08,304,6.60 +1663117200,1.34,297,6.30 +1663120800,1.57,297,7.40 +1663124400,1.61,300,7.60 +1663128000,1.75,301,7.80 +1663131600,1.61,300,7.80 +1663135200,1.61,300,7.30 +1663138800,1.14,255,7.00 +1663142400,0.92,221,5.70 +1663146000,1.48,208,6.20 +1663149600,2.02,200,6.90 +1663153200,2.38,202,7.70 +1663156800,2.26,193,8.20 +1663160400,2.30,214,7.60 +1663164000,2.02,237,7.40 +1663167600,1.94,235,6.80 +1663171200,1.56,225,6.60 +1663174800,1.25,209,6.20 +1663178400,1.36,253,7.80 +1663182000,1.40,270,8.70 +1663185600,1.32,279,9.10 +1663189200,1.41,262,10.00 +1663192800,1.40,270,10.50 +1663196400,1.41,262,11.20 +1663200000,1.81,264,11.30 +1663203600,1.43,258,11.30 +1663207200,1.79,243,10.40 +1663210800,1.96,255,11.30 +1663214400,1.68,253,11.30 +1663218000,1.65,284,12.40 +1663221600,2.02,261,12.30 +1663225200,2.01,297,12.40 +1663228800,1.68,197,11.80 +1663232400,2.04,191,11.20 +1663236000,3.14,202,13.60 +1663239600,3.58,207,14.30 +1663243200,5.19,214,16.00 +1663246800,4.02,207,19.30 +1663250400,4.41,213,16.80 +1663254000,3.62,204,16.50 +1663257600,3.26,207,14.40 +1663261200,2.38,202,12.80 +1663264800,1.30,180,11.20 +1663268400,1.84,209,10.30 +1663272000,1.26,198,10.30 +1663275600,1.70,208,10.60 +1663279200,1.98,225,10.90 +1663282800,1.17,239,10.80 +1663286400,1.94,215,10.30 +1663290000,1.77,254,13.60 +1663293600,0.85,291,11.90 +1663297200,1.02,281,12.90 +1663300800,1.97,210,12.10 +1663304400,1.24,194,12.70 +1663308000,1.30,203,11.40 +1663311600,1.75,204,11.40 +1663315200,2.42,204,12.70 +1663318800,3.45,210,14.30 +1663322400,3.61,222,15.90 +1663326000,3.84,219,15.40 +1663329600,3.88,215,15.40 +1663333200,3.34,219,15.00 +1663336800,3.39,225,15.20 +1663340400,3.18,224,15.10 +1663344000,2.97,222,13.80 +1663347600,1.86,216,13.10 +1663351200,1.62,202,11.90 +1663354800,1.72,216,10.90 +1663358400,1.66,213,11.40 +1663362000,1.94,215,11.60 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2023.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2023.csv new file mode 100644 index 0000000000000000000000000000000000000000..6eb56a96c36e35cc29830c1455107ab224b14c6e --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2023.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,CEST + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1694469600,0.95,288,3.40 +1694473200,0.95,288,3.80 +1694476800,0.95,288,4.40 +1694480400,0.98,294,4.10 +1694484000,0.98,294,4.20 +1694487600,1.08,292,4.50 +1694491200,0.98,294,4.50 +1694494800,0.98,294,4.40 +1694498400,1.30,293,4.50 +1694502000,1.00,233,4.50 +1694505600,1.33,193,4.80 +1694509200,1.81,186,6.00 +1694512800,2.21,185,7.20 +1694516400,2.83,188,8.40 +1694520000,3.20,180,9.30 +1694523600,3.30,182,9.80 +1694527200,3.01,186,9.70 +1694530800,3.01,184,8.80 +1694534400,1.80,177,8.60 +1694538000,1.65,166,5.60 +1694541600,1.39,240,4.40 +1694545200,1.40,270,3.90 +1694548800,1.30,274,4.10 +1694552400,1.04,287,4.20 +1694556000,1.12,297,4.40 +1694559600,1.25,299,4.80 +1694563200,1.03,299,5.00 +1694566800,1.17,301,4.40 +1694570400,1.17,301,4.70 +1694574000,1.08,304,4.50 +1694577600,0.94,302,4.50 +1694581200,1.03,299,4.40 +1694584800,1.25,299,4.50 +1694588400,0.90,270,4.40 +1694592000,0.64,219,3.20 +1694595600,0.50,180,3.40 +1694599200,1.40,176,5.30 +1694602800,1.73,170,6.30 +1694606400,2.57,167,7.70 +1694610000,2.46,153,8.10 +1694613600,2.72,163,8.00 +1694617200,2.72,174,8.00 +1694620800,2.10,183,7.60 +1694624400,1.43,168,5.90 +1694628000,1.17,200,4.80 +1694631600,1.02,259,4.50 +1694635200,1.24,284,4.70 +1694638800,1.30,302,4.90 +1694642400,1.17,301,4.70 +1694646000,0.81,300,4.30 +1694649600,0.85,291,4.20 +1694653200,1.66,295,5.50 +1694656800,2.02,303,7.10 +1694660400,1.78,308,6.60 +1694664000,0.91,264,5.70 +1694667600,0.58,301,3.60 +1694671200,1.98,319,5.70 +1694674800,0.76,23,5.90 +1694678400,0.81,97,4.00 +1694682000,1.34,117,5.70 +1694685600,2.06,141,7.20 +1694689200,3.06,169,9.10 +1694692800,2.22,188,9.50 +1694696400,1.92,219,7.10 +1694700000,1.30,184,5.80 +1694703600,1.27,225,5.50 +1694707200,0.42,135,4.50 +1694710800,1.12,100,3.40 +1694714400,0.81,330,2.50 +1694718000,0.63,342,2.70 +1694721600,0.50,270,2.20 +1694725200,0.91,264,3.50 +1694728800,0.36,304,3.50 +1694732400,0.72,304,2.70 +1694736000,0.41,284,3.30 +1694739600,0.70,270,5.20 +1694743200,1.12,297,5.00 +1694746800,0.81,277,5.30 +1694750400,0.72,304,5.90 +1694754000,0.63,288,5.40 +1694757600,1.30,270,3.90 +1694761200,1.00,276,5.20 +1694764800,1.52,203,5.60 +1694768400,1.94,192,8.40 +1694772000,2.12,199,8.40 +1694775600,2.47,212,7.50 +1694779200,2.77,206,8.30 +1694782800,2.42,218,8.10 +1694786400,1.66,205,7.30 +1694790000,1.42,141,5.50 +1694793600,1.48,152,4.90 +1694797200,1.00,143,4.30 +1694800800,0.91,186,3.80 +1694804400,0.10,360,2.60 +1694808000,0.58,301,2.60 +1694811600,0.63,288,3.00 +1694815200,0.81,300,3.60 +1694818800,1.21,294,4.30 +1694822400,0.63,288,4.40 +1694826000,0.95,288,3.70 +1694829600,0.85,291,3.80 +1694833200,0.76,293,3.80 +1694836800,0.89,297,3.90 +1694840400,0.89,297,4.00 +1694844000,1.25,299,4.00 +1694847600,0.30,360,4.00 +1694851200,0.78,130,3.40 +1694854800,1.58,145,5.20 +1694858400,2.18,164,7.70 +1694862000,2.67,167,8.40 +1694865600,2.01,186,8.60 +1694869200,1.96,195,7.20 +1694872800,1.98,221,7.40 +1694876400,1.14,218,6.70 +1694880000,1.50,184,4.00 +1694883600,1.10,175,4.30 +1694887200,1.36,234,3.80 +1694890800,1.20,270,4.20 +1694894400,1.00,270,4.10 +1694898000,1.00,276,4.50 diff --git a/utilities/forecastAnalysis/storical/data/roccaraso/2024.csv b/utilities/forecastAnalysis/storical/data/roccaraso/2024.csv new file mode 100644 index 0000000000000000000000000000000000000000..706d0852eb4c1f8c2436da025c52076b44127d55 --- /dev/null +++ b/utilities/forecastAnalysis/storical/data/roccaraso/2024.csv @@ -0,0 +1,124 @@ +latitude,longitude,elevation,utc_offset_seconds,timezone,timezone_abbreviation +41.792618,14.086956,1411.0,7200,Europe/Rome,GMT+2 + +time,wind_speed_10m (m/s),wind_direction_10m (°),wind_gusts_10m (m/s) +1726092000,1.30,270,5.90 +1726095600,1.30,274,6.10 +1726099200,1.50,274,6.60 +1726102800,1.41,278,7.00 +1726106400,1.70,273,7.70 +1726110000,1.81,276,8.10 +1726113600,1.81,276,8.30 +1726117200,1.60,270,8.40 +1726120800,1.97,246,8.80 +1726124400,2.41,228,10.00 +1726128000,3.32,224,11.40 +1726131600,4.24,227,13.10 +1726135200,4.74,226,13.60 +1726138800,3.98,219,14.00 +1726142400,3.55,212,12.70 +1726146000,3.81,203,12.20 +1726149600,3.14,202,12.60 +1726153200,3.42,201,11.90 +1726156800,2.85,198,11.80 +1726160400,2.79,201,10.30 +1726164000,2.00,180,13.70 +1726167600,2.20,177,13.00 +1726171200,2.30,182,11.30 +1726174800,2.35,192,11.60 +1726178400,1.48,208,11.70 +1726182000,2.90,226,12.20 +1726185600,2.56,231,12.00 +1726189200,1.70,242,12.30 +1726192800,1.61,240,11.40 +1726196400,1.64,232,11.20 +1726200000,1.56,220,10.80 +1726203600,0.72,236,9.30 +1726207200,1.17,211,7.90 +1726210800,2.20,210,8.70 +1726214400,2.52,214,9.00 +1726218000,2.92,211,9.80 +1726221600,3.04,226,13.40 +1726225200,3.64,217,13.50 +1726228800,3.48,231,12.20 +1726232400,2.77,244,12.90 +1726236000,2.60,270,11.60 +1726239600,2.50,270,9.60 +1726243200,0.73,254,8.30 +1726246800,1.00,6,4.50 +1726250400,1.50,356,5.00 +1726254000,2.11,355,7.00 +1726257600,2.44,341,8.60 +1726261200,2.34,320,9.40 +1726264800,2.20,321,9.50 +1726268400,2.12,315,9.00 +1726272000,2.55,312,9.00 +1726275600,1.91,313,7.30 +1726279200,2.05,313,8.10 +1726282800,1.97,300,8.60 +1726286400,1.89,302,8.80 +1726290000,1.86,306,8.80 +1726293600,2.42,308,8.60 +1726297200,1.56,320,8.60 +1726300800,2.20,321,7.60 +1726304400,3.16,325,10.60 +1726308000,3.11,327,11.00 +1726311600,2.72,324,10.30 +1726315200,3.00,330,10.10 +1726318800,1.20,312,5.40 +1726322400,0.82,284,5.10 +1726326000,1.55,345,5.90 +1726329600,0.64,39,5.90 +1726333200,0.89,63,3.80 +1726336800,1.08,338,4.50 +1726340400,1.36,306,6.30 +1726344000,1.30,293,7.00 +1726347600,1.39,291,7.90 +1726351200,1.36,306,7.90 +1726354800,1.77,317,8.60 +1726358400,2.26,315,9.10 +1726362000,1.49,318,7.60 +1726365600,1.25,299,6.60 +1726369200,1.77,317,6.70 +1726372800,2.40,315,8.50 +1726376400,2.97,318,9.90 +1726380000,3.16,325,10.50 +1726383600,2.48,313,10.40 +1726387200,1.89,328,8.40 +1726390800,1.39,339,7.30 +1726394400,1.33,347,6.30 +1726398000,2.00,357,7.20 +1726401600,1.94,12,8.10 +1726405200,0.71,98,5.30 +1726408800,1.43,78,5.00 +1726412400,1.82,99,5.70 +1726416000,1.79,117,5.30 +1726419600,1.00,96,4.40 +1726423200,0.63,72,3.00 +1726426800,0.82,14,3.40 +1726430400,1.10,5,4.70 +1726434000,1.03,331,4.80 +1726437600,1.20,318,5.30 +1726441200,1.49,312,6.00 +1726444800,1.70,315,6.50 +1726448400,1.08,326,6.10 +1726452000,0.63,342,4.80 +1726455600,0.61,351,3.80 +1726459200,1.04,17,4.30 +1726462800,0.80,360,4.40 +1726466400,1.03,29,4.20 +1726470000,1.22,35,4.80 +1726473600,1.06,41,4.90 +1726477200,1.12,63,4.80 +1726480800,1.00,127,5.90 +1726484400,1.06,139,5.40 +1726488000,1.26,198,5.80 +1726491600,1.03,151,6.10 +1726495200,0.95,162,5.30 +1726498800,1.24,166,4.90 +1726502400,1.28,141,5.30 +1726506000,1.06,131,4.70 +1726509600,0.78,50,3.60 +1726513200,0.78,40,3.20 +1726516800,1.06,41,3.30 +1726520400,1.14,52,4.10 diff --git a/utilities/forecastAnalysis/storical/get_data.py b/utilities/forecastAnalysis/storical/get_data.py new file mode 100644 index 0000000000000000000000000000000000000000..01c45e24c9c4831ecfa827f5eb764e1e1c817d9d --- /dev/null +++ b/utilities/forecastAnalysis/storical/get_data.py @@ -0,0 +1,195 @@ +## --------------- import libraries --------------- +import openmeteo_requests + +import requests_cache +import pathlib +import pandas as pd +import os +import json + +from datetime import datetime +from retry_requests import retry + +## --------------- general settings --------------- + +mission = "euroc" +selected_year = 2024 +default_data_extension = ".csv" + +if mission == "roccaraso": + latitude = 41.8084579 + longitude = 14.0546408 + month_name = "September" + day_start = str(12).zfill(2) + day_end = str(16).zfill(2) +elif mission == "euroc": + latitude = 39.388727 + longitude = -8.287842 + month_name = "October" + day_start = str(9).zfill(2) + day_end = str(15).zfill(2) + +year = str(selected_year) + +month = str(datetime.strptime(month_name, "%B").month).zfill(2) + +start_date = year + "-" + month + "-" + day_start +end_date = year + "-" + month + "-" + day_end + +print(start_date) +print(end_date) + +## --------------- CREATE PARAMS --------------- +params = { + "latitude": latitude, + "longitude": longitude, + "start_date": start_date, + "end_date": end_date, + "hourly": ["wind_speed_10m", "wind_direction_10m", "wind_gusts_10m"], + "models": "ecmwf_ifs", + "timezone": "auto", + "wind_speed_unit": "ms", + "timeformat": "unixtime" +} + +## --------------- path generation --------------- + +path = pathlib.Path(__file__).parent.resolve() +fullpath = str(path) + "\\" + mission + "\data\\" +print(fullpath) +name_csv_file = year + default_data_extension +full_file_path = fullpath + name_csv_file +print(full_file_path) + +## --------------- copied code snippet from OPENMETEO --------------- + +# Create a path for cache +cache_folder = ".cache" +path_to_cache_dir = os.path.join(path, cache_folder) +path_to_cache_file = os.path.join(path_to_cache_dir, "cache.sqlite") + +# Create cache directory if it doesn't exist +if not os.path.exists(path_to_cache_dir): + os.makedirs(path_to_cache_dir) + print("The new directory is created!") + +print(path_to_cache_dir) + +# Setup the Open-Meteo API client with cache and retry on error +cache_session = requests_cache.CachedSession(path_to_cache_file, expire_after = -1) +retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2) +openmeteo = openmeteo_requests.Client(session = retry_session) + +# Make sure all required weather variables are listed here +# The order of variables in hourly or daily is important to assign them correctly below +url = "https://archive-api.open-meteo.com/v1/archive" +responses = openmeteo.weather_api(url, params=params) + +## --------------- PRINTS --------------- +# Process first location. Add a for-loop for multiple locations or weather models +response = responses[0] +print(f"Coordinates {response.Latitude()}°N {response.Longitude()}°E") +print(f"Elevation {response.Elevation()} m asl") +print(f"Timezone {response.Timezone()}{response.TimezoneAbbreviation()}") +print(f"Timezone difference to GMT+0 {response.UtcOffsetSeconds()} s") + +# Process hourly data. The order of variables needs to be the same as requested. +hourly = response.Hourly() +hourly_wind_speed_10m = hourly.Variables(0).ValuesAsNumpy() +hourly_wind_direction_10m = hourly.Variables(1).ValuesAsNumpy() +hourly_wind_gusts_10m = hourly.Variables(2).ValuesAsNumpy() + +hourly_data = {"date": pd.date_range( + start = pd.to_datetime(hourly.Time(), unit = "s", utc = True), + end = pd.to_datetime(hourly.TimeEnd(), unit = "s", utc = True), + freq = pd.Timedelta(seconds = hourly.Interval()), + inclusive = "left" +)} + +hourly_data["wind_speed_10m"] = hourly_wind_speed_10m +hourly_data["wind_direction_10m"] = hourly_wind_direction_10m +hourly_data["wind_gusts_10m"] = hourly_wind_gusts_10m + +hourly_dataframe = pd.DataFrame(data = hourly_data) +print(hourly_dataframe) + +## --------------- SAVE TO JSON FILE to backup --------------- +# Helper function to decode bytes if needed +def decode_if_bytes(value): + return value.decode("utf-8") if isinstance(value, bytes) else value + +# Extract the data into a serializable dict +json_data = { + "latitude": response.Latitude(), + "longitude": response.Longitude(), + "elevation": response.Elevation(), + "utc_offset_seconds": response.UtcOffsetSeconds(), + "timezone": decode_if_bytes(response.Timezone()), + "timezone_abbreviation": decode_if_bytes(response.TimezoneAbbreviation()), + "hourly_units": { + "time": "unixtime", + "wind_speed_10m": "m/s", + "wind_direction_10m": "°", + "wind_gusts_10m": "m/s" + }, + "hourly": { + "start_time": decode_if_bytes(hourly.Time()), + "end_time": decode_if_bytes(hourly.TimeEnd()), + "interval": hourly.Interval(), + "wind_speed_10m": hourly_wind_speed_10m.tolist(), + "wind_direction_10m": hourly_wind_direction_10m.tolist(), + "wind_gusts_10m": hourly_wind_gusts_10m.tolist() + } +} + + +# Save to JSON file +# Create a path for output +output_folder = ".output" +path_to_output = os.path.join(path, output_folder) + +# Create cache directory if it doesn't exist +if not os.path.exists(path_to_output): + os.makedirs(path_to_output) + print("The new directory is created!") + +print(path_to_output) + +json_output_path = os.path.join(path_to_output, f"{selected_year}_backup.json") +with open(json_output_path, "w") as json_file: + json.dump(json_data, json_file, indent=4) + +print(f"Saved response backup to {json_output_path}") + +## --------------- SAVE TO CSV FILE --------------- +# Save metadata row +metadata_row = pd.DataFrame([{ + "latitude": round(response.Latitude(), 6), + "longitude": round(response.Longitude(), 6), + "elevation": round(response.Elevation(), 1), + "utc_offset_seconds": response.UtcOffsetSeconds(), + "timezone": decode_if_bytes(response.Timezone()), + "timezone_abbreviation": decode_if_bytes(response.TimezoneAbbreviation()) +}]) + +# Define clean column names with proper Unicode encoding +column_names = { + "time": "time", + "wind_speed_10m": "wind_speed_10m (m/s)", + "wind_direction_10m": "wind_direction_10m (\u00B0)", + "wind_gusts_10m": "wind_gusts_10m (m/s)" +} + +# Prepare and format data +hourly_dataframe_unix = pd.DataFrame({ + column_names["time"]: hourly_dataframe["date"].astype("int64") // 10**9, + column_names["wind_speed_10m"]: hourly_dataframe["wind_speed_10m"].round(2).map(lambda x: f"{x:.2f}"), + column_names["wind_direction_10m"]: hourly_dataframe["wind_direction_10m"].round().astype(int), + column_names["wind_gusts_10m"]: hourly_dataframe["wind_gusts_10m"].round(2).map(lambda x: f"{x:.2f}") +}) + +# Save CSV with proper UTF-8 encoding +with open(full_file_path, "w", encoding="utf-8", newline="") as f: + metadata_row.to_csv(f, index=False) + f.write("\n") + hourly_dataframe_unix.to_csv(f, index=False) diff --git a/utilities/forecastAnalysis/storical/mainStoricalAnalysis.m b/utilities/forecastAnalysis/storical/mainStoricalAnalysis.m new file mode 100644 index 0000000000000000000000000000000000000000..6c278b84bfb1035ac3ec5a91c53467ea230b29a4 --- /dev/null +++ b/utilities/forecastAnalysis/storical/mainStoricalAnalysis.m @@ -0,0 +1,72 @@ +function mainStoricalAnalysis() +% mainStoricalAnalysis - Main script to analyse wind history in launch +% places +% +% Copyright © 2025, Skyward Experimental Rocketry, AFD department +% All rights reserved + +%% path +currentFolder = fileparts(mfilename('fullpath')); +addpath(genpath(fullfile(currentFolder, 'data'))); +addpath(genpath(fullfile(currentFolder, 'src'))); + +%% initialization +storicalAnalysisConfig +yearStrings = settings.yearBegin:1:settings.yearEnd; +yearSamples = length(yearStrings); +yearsLegendLabels = string(settings.yearBegin:settings.yearEnd); +geo = switchLocation(settings.location); + + +%% read storic data Roccaraso +[data, dataSamples, time] = read(yearSamples, settings.startIterator, settings.location); + +%% Processing +elaboration = processData(data, dataSamples, yearSamples, settings.startIterator); + +%% geoplot launch site and weather station +if settings.flag.ifGeoplots +geoplots(geo, settings.location); +end + +%% Nominal, critical and subcritical values +if settings.flag.ifBarChart + +%%% wind speed +barChartVelocity(data, time, "wind_speed_10m (m/s)", yearStrings, yearSamples, ... + settings.startIterator, settings.windModel, elaboration.speed, "wind speed"); + +%%% wind gusts +barChartVelocity(data, time, "wind_gusts_10m (m/s)", yearStrings, yearSamples, ... + settings.startIterator, settings.windModel, elaboration.gusts, "wind gusts"); + +%%% wind direction - 4 main directions +barChartDirection(data, time, "wind_direction_10m (°)", yearStrings, yearSamples, ... + settings.startIterator, settings.windModel, "wind direction"); +end + +%% Compass graph +if settings.flag.ifCompass +compass(data, yearsLegendLabels, yearSamples, settings.startIterator, settings.windModel); +end + +%% Plots +if settings.flag.ifPlots +generalPlots(elaboration, data, time, yearSamples, settings.startIterator, ... + yearsLegendLabels, settings.windModel, settings.location) +end + +%% Gaussian curve +% true gaussian curve based on mean data and flight window +if settings.flag.ifGaussianDistribution +[gauss, elaboration] = gaussianDistribution(elaboration, data, time, settings.startIterator, ... + yearSamples, settings.yearBegin, settings.yearEnd); +end + +%% printing results +if settings.flag.ifPrints + clc + print(gauss, geo, elaboration, yearStrings, settings.location) +end +end + diff --git a/utilities/forecastAnalysis/storical/src/barChartDirection.m b/utilities/forecastAnalysis/storical/src/barChartDirection.m new file mode 100644 index 0000000000000000000000000000000000000000..1b30f9f12890639513f78fa5fb20a0d7ce9259ce --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/barChartDirection.m @@ -0,0 +1,45 @@ +function barChartDirection(data, time, fieldString, yearStrings, ... + yearSamples, startIterator, windModel, what_) +% barChartDirection - function that plots the bar chart for wind direction +% +% INPUTS: +% data, struct: struct containing all data +% time, time: time period during which the measurement was taken +% fieldString, string: a string used on the plots containing wind +% speed +% yearStrings, double : array containing the years +% yearSamples, double : number of years considerated +% startIterator, double: year before the first we are interested in +% windModel, char : the wind model +% what_, string : what the function is evaluating + +y = []; +for k = 1:yearSamples + northEast = []; eastSouth = []; southWest = []; westNorth = []; + year = num2str(startIterator+k); + structName = ['data',year]; + for i = 1:length(time) + if (data.(structName).(fieldString)(i) >= 0 && data.(structName).(fieldString)(i) < 90) % north-east + northEast = [northEast data.(structName).(fieldString)(i)]; + elseif (data.(structName).(fieldString)(i) >= 90 && data.(structName).(fieldString)(i) < 180) % east-south + eastSouth = [eastSouth data.(structName).(fieldString)(i)]; + elseif (data.(structName).(fieldString)(i) >= 180 && data.(structName).(fieldString)(i) < 270) % south-west + southWest = [southWest data.(structName).(fieldString)(i)]; + else + westNorth = [westNorth data.(structName).(fieldString)(i)]; + end + end + y = [y; length(northEast) length(eastSouth) ... + length(southWest) length(westNorth)]; +end + +figure(); +bar(yearStrings,y); hold on +legend('North-East','East-South','South-West','West-North') +ylabel('Samples') +xlabel('Years') +grid('minor') +title(sprintf('Bar chart distribution of %s over the years', what_)); +subtitle(windModel) +end + diff --git a/utilities/forecastAnalysis/storical/src/barChartVelocity.m b/utilities/forecastAnalysis/storical/src/barChartVelocity.m new file mode 100644 index 0000000000000000000000000000000000000000..8b846ebd4282e553df509c46a58f8a1e526b4dd3 --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/barChartVelocity.m @@ -0,0 +1,48 @@ +function barChartVelocity(data, time, fieldString, yearStrings, ... + yearSamples, startIterator, windModel, self_, what_) +% barChartVelocity - function that plots the bar chart for wind velocity +% +% INPUTS: +% data, struct: struct containing all data +% time, time: time period during which the measurement was taken +% fieldString, string: a string used on the plots containing wind +% speed +% yearStrings, double : array containing the years +% yearSamples, double : number of years considerated +% startIterator, double: year before the first we are interested in +% windModel, char : the wind model +% self_, struct : struct containing wind information +% what_, string : what the function is evaluating +y = []; +for k = 1:yearSamples + criticalValues = []; + nominalValues = []; + subcriticalValues = []; + year = num2str(startIterator+k); + structName = ['data',year]; + for i = 1:length(time) + if (data.(structName).(fieldString)(i) > self_.maxval) + criticalValues = [criticalValues data.(structName).(fieldString)(i)]; + elseif (data.(structName).(fieldString)(i) < self_.minval) + subcriticalValues = [subcriticalValues data.(structName).(fieldString)(i)]; + else + nominalValues = [nominalValues data.(structName).(fieldString)(i)]; + end + end + y = [y; length(subcriticalValues) length(nominalValues) ... + length(criticalValues)]; +end + + +figure(); +bar(yearStrings,y); hold on +legend(['x < ',num2str(self_.minval),' m/s'], ... + [num2str(self_.minval),' m/s < x < ',num2str(self_.maxval),' m/s'], ... + ['x > ',num2str(self_.maxval),' m/s']) +ylabel('samples') +xlabel('years') +grid('minor') +title(sprintf('Bar chart distribution of %s over the years', what_)); +subtitle(windModel) +end + diff --git a/utilities/forecastAnalysis/storical/src/compass.m b/utilities/forecastAnalysis/storical/src/compass.m new file mode 100644 index 0000000000000000000000000000000000000000..d0a66bd609dfccd7e1b4bde734d1c2d1fd9bdc92 --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/compass.m @@ -0,0 +1,27 @@ +function compass(data, yearsLegendLabels, yearSamples, startIterator, windModel) +% compass - function that plots the wind rose +% +% INPUTS: +% data, struct: struct containing all data +% time, time: time period during which the measurement was taken +% fieldString, string: a string used on the plots containing wind +% speed +% yearLegendLabels, string array : string array containing years for the plots +% yearSamples, double : number of years considerated +% startIterator, double: year before the first we are interested in +% windModel, char : the wind model +figure; +for k = 1:yearSamples + year = num2str(startIterator+k); + structName = ['data',year]; + polarhistogram(data.(structName).("wind_direction_10m (°)"),'BinMethod','sqrt'); hold on +end +pax = gca; +pax.ThetaTick = 0:45:360; +labels = {'E','NE','N','NW','W','SW','S','SE'}; +pax.ThetaTickLabel = labels; +legend(yearsLegendLabels) +title('Polar distribution of wind direction over the years') +subtitle(windModel) +end + diff --git a/utilities/forecastAnalysis/storical/src/flightWindow.m b/utilities/forecastAnalysis/storical/src/flightWindow.m new file mode 100644 index 0000000000000000000000000000000000000000..12b7d1be3354556ab152b557a4f74573d7f24d94 --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/flightWindow.m @@ -0,0 +1,37 @@ +function flightWindow(time, location) +% flightWindow - function that select the flight window in order to show it +% on the plots +% +% INPUTS: +% time, time: time period during which the measurement was taken +% location, char: location of the launch +switch location + case 'roccaraso' + k = 14; % shifting hours according to samples + % e.g.: first data of timestamp is at 22:00 + % flight window at 12:00 -> +14 h + fw = 6; + % flight window in hours + % e.g: from 12:00 to 18:00 -> 6 h + for i = 1:(length(time))-fw + if (i+fw)+k <= 120 + xregion([time(i+k),time((i+fw)+k)]); hold off; + k = k + 23; % day shifting. one window per day + end + end + + case 'euroc' + k = 10; % shifting hours according to samples + % e.g.: first data of timestamp is at 23:00 + % flight window at 9:00 -> +10 h + fw = 8; + % flight window in hours + % e.g: from 9:00 to 17:00 -> 8 h + for i = 1:(length(time))-fw + if (i+fw)+k <= 180 + xregion([time(i+k),time((i+fw)+k)]); hold off; + k = k + 23; % day shifting. one window per day + end + end +end +end \ No newline at end of file diff --git a/utilities/forecastAnalysis/storical/src/gaussianDistribution.m b/utilities/forecastAnalysis/storical/src/gaussianDistribution.m new file mode 100644 index 0000000000000000000000000000000000000000..27f2317b5a2b66d068ea8db9ff205c52eca26346 --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/gaussianDistribution.m @@ -0,0 +1,133 @@ +function [g, elaboration] = gaussianDistribution(elaboration, data, time, startIterator, ... + yearSamples, yearBegin, yearEnd) +% gaussianDistribution - function that computes and plots the gaussian +% distribution of the wind of past years +% +% INPUTS: +% elaboration, struct : struct containing wind information +% data, struct: struct containing all data +% time, time: time period during which the measurement was taken +% startIterator, double: year before the first we are interested in +% yearSamples, double : number of years considerated +% yearBegin, double : first year +% yearEnd, double : last year +% +% OUTPUTS: +% g, struct: struct containing the gaussian curve data +% elaboration, struct : struct containing wind information related to +% the gaussian curve + +%%% wind speed +%%%%% gaussian curve of the global mean speed +[muMean,sMean,~,~] = normfit(elaboration.speed.mean); +xQueryMean = linspace(0,2*muMean,1000); +gxMean = (1 / (sMean * sqrt(2*pi))) * exp(-((xQueryMean - muMean).^2) / (2 * sMean^2)); + +%%%%% gaussian curve of the speed in time window +fw = 6; +overallDataTimeWindow = []; +for j = 1:yearSamples + year = num2str(startIterator+j); + structName = ['data',year]; + k = 14; + for i = 1:(length(time))-fw + if (i+fw)+k <= 120 + overallDataTimeWindow = [overallDataTimeWindow data.(structName).("wind_speed_10m (m/s)")((i+k):(i+fw+k))]; + k = k + 23; % day shifting. one window per day + end + end +end +xTimeWindow = sort(reshape(overallDataTimeWindow,1,[])); +[muTimeWindow,sTimeWindow,~,~] = normfit(xTimeWindow); +xQueryTimeWindow = linspace(0,2.75*muTimeWindow,1000); +gxTimeWindow = (1 / (sTimeWindow * sqrt(2*pi))) * exp(-((xQueryTimeWindow - muTimeWindow).^2) / (2 * sTimeWindow^2)); + +%%%%% gaussian curve of the global mean speed in time window +k = 14; +fw = 6; +meanTimeWindow = []; +for i = 1:(length(time))-fw + if (i+fw)+k <= 120 + meanTimeWindow = [meanTimeWindow elaboration.speed.mean((i+k):(i+fw+k))]; + k = k + 23; % day shifting. one window per day + end +end +xMeanTimeWindow = sort(reshape(meanTimeWindow,1,[])); +[muMeanTimeWindow,sMeanTimeWindow,~,~] = normfit(xMeanTimeWindow); +xQueryMeanTimeWindow = linspace(0,2.75*muMeanTimeWindow,1000); +gxMeanTimeWindow = (1 / (sMeanTimeWindow * sqrt(2*pi))) * exp(-((xQueryMeanTimeWindow - muMeanTimeWindow).^2) / (2 * sMeanTimeWindow^2)); + +%%%%% gaussian curve of the global speed +globalData = zeros(120,yearSamples); +for j = 1:yearSamples + year = num2str(startIterator+j); + structName = ['data',year]; + globalData(:,j) = data.(structName).("wind_speed_10m (m/s)"); +end +xGlobal = sort(reshape(globalData,1,[])); +[muGlobal,sGlobal,~,~] = normfit(xGlobal); +xQueryGlobal = linspace(0,2.75*muGlobal,1000); +gxGlobal = (1 / (sGlobal * sqrt(2*pi))) * exp(-((xQueryGlobal - muGlobal).^2) / (2 * sGlobal^2)); + +figure; +plot(xQueryGlobal, gxGlobal, 'Linewidth', 1.2); hold on; +plot(xQueryTimeWindow, gxTimeWindow, 'Linewidth', 1.2); hold on; +plot(xQueryMean, gxMean, 'Linewidth', 1.2); hold on; +plot(xQueryMeanTimeWindow, gxMeanTimeWindow, 'Linewidth', 1.2); hold on; +xline(min(elaboration.speed.mean), 'g--', 'Linewidth', 1.2); hold on +xline(max(elaboration.speed.mean), 'r--', 'Linewidth', 1.2) +grid('minor') +xlabel('Wind speed [m/s]') +ylabel('Probability density') +legend('Years','Years time window constraint','Mean', ... + 'Mean time window constraint', 'Mean min', 'Mean max') +title('Wind speed gaussian curves') +subtitle({'Time constraint: from 12:00 to 18:00', ... + ['Years: from ', num2str(yearBegin), ' to ', num2str(yearEnd)]}) + +g = struct(); +g.mu.global = muGlobal; +g.mu.mean = muMean; +g.mu.time_window = muTimeWindow; +g.mu.mean_time_window = muMeanTimeWindow; + +g.s.global = sGlobal; +g.s.mean = sMean; +g.s.time_window = sTimeWindow; +g.s.mean_time_window = sMeanTimeWindow; + +%%% wind speed +muv = zeros(1,yearSamples); sv = zeros(1,yearSamples); gxv = zeros(120,yearSamples); +fieldString = "wind_speed_10m (m/s)"; +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + [mu,s,~,~] = normfit(data.(structName).(fieldString)); + x = sort(data.(structName).(fieldString)); + gx = (1 / (s * sqrt(2*pi))) * exp(-((x - mu).^2) / (2 * s^2)); + muv(i) = mu; sv(i) = s; gxv(:,i) = gx; +end +elaboration.speed.gx = gxv; +elaboration.speed.mu = muv; +elaboration.speed.s = sv; + +%%% wind direction +% prefer using the gaussian curve of the distribution of values and not the +% gaussian curve itself + +%%% wind speed +muv = zeros(1,yearSamples); sv = zeros(1,yearSamples); gxv = zeros(120,yearSamples); +fieldString = "wind_gusts_10m (m/s)"; +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + [mu,s,~,~] = normfit(data.(structName).(fieldString)); + x = sort(data.(structName).(fieldString)); + gx = (1 / (s * sqrt(2*pi))) * exp(-((x - mu).^2) / (2 * s^2)); + muv(i) = mu; sv(i) = s; gxv(:,i) = gx; +end +elaboration.gusts.gx = gxv; +elaboration.gusts.mu = muv; +elaboration.gusts.s = sv; +end + diff --git a/utilities/forecastAnalysis/storical/src/generalPlots.m b/utilities/forecastAnalysis/storical/src/generalPlots.m new file mode 100644 index 0000000000000000000000000000000000000000..8db9c89267c90c50097cb2735bd8f3c58bb5c320 --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/generalPlots.m @@ -0,0 +1,84 @@ +function generalPlots(elaboration, data, time, yearSamples, startIterator, yearsLegendLabels, windModel, location) +% generalPlots - function that generates plots of the analysis +% +% INPUTS: +% elaboration, struct : struct containing wind information +% data, struct: struct containing all data +% time, time: time period during which the measurement was taken +% yearSamples, double : number of years +% startIterator, double: year before the first we are interested in +% yearsLegendLabels, string array : string array containing years for +% the plots +% windModel, char : the wind model +% location, char : location of the launchsite + + +%%% WIND SPEED +switch location + case 'roccaraso' + days = {'Sep 12','Sep 13','Sep 14','Sep 15','Sep 16'}; + + case 'euroc' + days = {'Oct 9','Oct 10','Oct 11','Oct 12','Oct 13','Oct 14','Oct 15'}; +end +figure; +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + plot(time, data.(structName).("wind_speed_10m (m/s)")); hold on; + xlabel('Time [days]') + ylabel('Wind speed [m/s]') +end +plot(time, elaboration.speed.mean, 'k', 'Linewidth', 1.2); hold on +plot(time, ones(length(time),1)*elaboration.speed.minval, '--g', 'Linewidth', 1.2) +plot(time, ones(length(time),1)*elaboration.speed.maxval, '--r', 'Linewidth', 1.2) +flightWindow(time, location); +legend([yearsLegendLabels,'Mean','Min','Max'], ... + 'NumColumns', 2) +grid('minor') +xlim([time(1), time(end)]) +xticklabels(days) +xtickangle(0) +title('Wind speed over years from 12:00 to 18:00') +subtitle(windModel) + +%%% WIND DIRECTION +figure; +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + plot(time, data.(structName).("wind_direction_10m (°)")); hold on; + xlabel('Time [days]') + ylabel('Wind direction [deg]') +end +plot(time, elaboration.direction.mean, 'k', 'Linewidth', 1.2); hold on +flightWindow(time, location) +legend([yearsLegendLabels,'Mean'], 'NumColumns', 2) +grid('minor') +xticklabels(days) +xtickangle(0) +xlim([time(1), time(end)]) +title('Wind direction over years from 12:00 to 18:00') +subtitle(windModel) + +%%% WIND GUSTS +figure; +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + plot(time, data.(structName).("wind_gusts_10m (m/s)")); hold on; + xlabel('time [days]') + ylabel('speed [m/s]') +end +plot(time, elaboration.gusts.mean, 'k', 'Linewidth', 1.2); hold on +plot(time, ones(length(time),1)*elaboration.gusts.minval, '--g', 'Linewidth', 1.2) +plot(time, ones(length(time),1)*elaboration.gusts.maxval, '--r', 'Linewidth', 1.2) +flightWindow(time, location) +legend([yearsLegendLabels,'Mean','Min','Max'], ... + 'NumColumns', 2) +grid('minor') +xlim([time(1), time(end)]) +title('Wind gusts over years from 12:00 to 18:00') +subtitle(windModel) +end + diff --git a/utilities/forecastAnalysis/storical/src/geoplots.m b/utilities/forecastAnalysis/storical/src/geoplots.m new file mode 100644 index 0000000000000000000000000000000000000000..5868b22bbcfa03e4e1c0902c3bb6761f8df6f069 --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/geoplots.m @@ -0,0 +1,38 @@ +function geoplots(geo, location) +% geoplots - function that plots some point of interest on a satellite map +% +% INPUTS: +% geo, struct: struct containing coordinates of the launchsite +% location, char: tlocation of the launchsite + +switch location + case 'roccaraso' + figure; + geoplot(geo.latLaunch, geo.lonLaunch, 'ob', 'LineWidth', 3); hold on + geoplot(geo.latStation, geo.lonStation, 'or', 'LineWidth', 3) + geoplot([geo.latStation, geo.latLaunch], [geo.lonStation, geo.lonLaunch], ... + '--m', 'LineWidth', 1.2) + legend('Launch pad', 'Station data', 'Distance') + geobasemap satellite + title('Distance between weather station and launch site') + geolimits(geo.latLimits,geo.lonLimits) + + figure; + geoplot(geo.latLaunch, geo.lonLaunch, 'ob', 'LineWidth', 3); hold on + geoplot(geo.latNord, geo.lonNord, 'og', 'LineWidth', 3) + geoplot(geo.latHeidi, geo.lonHeidi, 'pr', 'LineWidth', 3); hold on + legend('South ramp', 'North ramp', 'Chalet Heidi') + geobasemap satellite + title('Launch sites') + geolimits([41.805, 41.815],[14.051, 14.055]) + + + case 'euroc' + figure; + geoplot(geo.latLaunch, geo.lonLaunch, 'ob', 'LineWidth', 3); + legend('Launch pad') + geobasemap satellite + title('Launch site position') + geolimits(geo.latLimits,geo.lonLimits) +end + diff --git a/utilities/forecastAnalysis/storical/src/print.m b/utilities/forecastAnalysis/storical/src/print.m new file mode 100644 index 0000000000000000000000000000000000000000..1ce6bf8577099d20d0e83eda4b233e81300ee8bf --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/print.m @@ -0,0 +1,65 @@ +function print(g, geo, elaboration, years, location) +% print - function that prints the result of the analysis +% +% INPUTS: +% g, struct: struct containing the gaussian curve data +% geo, struct: struct containing the coordinates of the location +% elaboration, struct : struct containing wind information related to +% the gaussian curve +% years, string array: string array containing years for the prints +% location, char: location of the launchsite +muGlobal = g.mu.global; +muMean = g.mu.mean; +muTimeWindow = g.mu.time_window; +muMeanTimeWindow = g.mu.mean_time_window; + +sGlobal = g.s.global; +sMean = g.s.mean; +sTimeWindow = g.s.time_window; +sMeanTimeWindow = g.s.mean_time_window; + +% Print basic info +if strcmp(location,'roccaraso') + fprintf('Distance between station and launch site: %.2f km\n\n', geo.arclen * 100); +end + +fprintf('Wind speed minimum value: %.2f m/s\n', elaboration.speed.minval); +fprintf('Wind speed maximum value: %.2f m/s\n', elaboration.speed.maxval); +fprintf('\nWind gust minimum value: %.2f m/s\n', elaboration.gusts.minval); +fprintf('Wind gust maximum value: %.2f m/s\n', elaboration.gusts.maxval); + +% Print wind speed mean +fprintf('\nWIND SPEED MEAN VALUE m/s\n'); +fprintf('%-10d', years); fprintf('\n'); +fprintf('%-10.2f', elaboration.speed.mu); fprintf('\n'); + +% Print gusts mean +fprintf('\nWIND GUSTS MEAN VALUE m/s\n'); +fprintf('%-10d', years); fprintf('\n'); +fprintf('%-10.2f', elaboration.gusts.mu); fprintf('\n'); + +% Print wind speed std deviation +fprintf('\nWIND SPEED STANDARD DEVIATION m/s\n'); +fprintf('%-10d', years); fprintf('\n'); +fprintf('%-10.2f', elaboration.speed.s); fprintf('\n'); + +% Print gusts std deviation +fprintf('\nWIND GUSTS STANDARD DEVIATION m/s\n'); +fprintf('%-10d', years); fprintf('\n'); +fprintf('%-10.2f', elaboration.gusts.s); fprintf('\n'); + +% Global statistics +fprintf('\n\nGaussian distribution of all data over years from %d to %d\n', years(1), years(end)); +fprintf('mu = %.2f m/s s = %.2f m/s\n', muGlobal, sGlobal); + +fprintf('\nGaussian distribution of all data over years with time window\n'); +fprintf('mu = %.2f m/s s = %.2f m/s\n', muTimeWindow, sTimeWindow); + +fprintf('\nGaussian distribution mean data\n'); +fprintf('mu = %.2f m/s s = %.2f m/s\n', muMean, sMean); + +fprintf('\nGaussian distribution of mean data with time window\n'); +fprintf('mu = %.2f m/s s = %.2f m/s\n', muMeanTimeWindow, sMeanTimeWindow); + +end + diff --git a/utilities/forecastAnalysis/storical/src/processData.m b/utilities/forecastAnalysis/storical/src/processData.m new file mode 100644 index 0000000000000000000000000000000000000000..3d8998630f95fa619bc2a8c96a4fe49789550cee --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/processData.m @@ -0,0 +1,45 @@ +function elaboration = processData(data, dataSamples, yearSamples, startIterator) +% processData - function that prepares data for the other functions +% +% INPUTS: +% data, struct: struct containing all data +% dataSamples, double : number of total samples +% yearSamples, double : number of years considerated +% startIterator, double: year before the first we are interested in + +% wind speed +fieldString = "wind_speed_10m (m/s)"; +sumOverYears = zeros(dataSamples, 1); +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + sumOverYears = sumOverYears + data.(structName).(fieldString); +end +elaboration.speed.mean = sumOverYears/yearSamples; +elaboration.speed.minval = min(elaboration.speed.mean); +elaboration.speed.maxval = max(elaboration.speed.mean); + +% wind direction +fieldString = "wind_direction_10m (°)"; +sumOverYears = zeros(dataSamples, 1); +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + sumOverYears = sumOverYears + data.(structName).(fieldString); +end +elaboration.direction.mean = sumOverYears/yearSamples; + +% wind gusts +fieldString = "wind_gusts_10m (m/s)"; +sumOverYears = zeros(dataSamples, 1); +for i = 1:yearSamples + year = num2str(startIterator+i); + structName = ['data',year]; + sumOverYears = sumOverYears + data.(structName).(fieldString); +end +elaboration.gusts.mean = sumOverYears/yearSamples; +elaboration.gusts.minval = min(elaboration.gusts.mean); +elaboration.gusts.maxval = max(elaboration.gusts.mean); + +end + diff --git a/utilities/forecastAnalysis/storical/src/read.m b/utilities/forecastAnalysis/storical/src/read.m new file mode 100644 index 0000000000000000000000000000000000000000..676a24ac6a90667b9c16492aa8b99ef20374af8d --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/read.m @@ -0,0 +1,25 @@ +function [data,dataSamples,time] = read(yearSamples,startIterator, location) +% read - function that reads data and put them into usefull variables +% +% INPUTS: +% yearSamples, double : number of years considerated +% startIterator, double: year before the first we are interested in +% location, char: name of the launchsite +% +% OUTPUTS: +% data, double : struct containing all data +% dataSamples, double: number of total samples +% time, time: time period during which the measurement was taken +for i = 1:yearSamples + year = num2str(startIterator+i); + fileName = ['data\',location,'\',year,'.csv']; + structName = ['data',year]; + data.(structName) = readtable(fileName,'VariableNamingRule', 'preserve'); +end + +dataSamples = length(data.data2017.time); + +time = datetime(data.data2017.time, 'convertfrom', 'posixtime', 'Format', ... + 'MM/dd HH:mm:ss.SSS'); +end + diff --git a/utilities/forecastAnalysis/storical/src/switchLocation.m b/utilities/forecastAnalysis/storical/src/switchLocation.m new file mode 100644 index 0000000000000000000000000000000000000000..70a1fff151025df9b57dfe594aff2c34f35fbeff --- /dev/null +++ b/utilities/forecastAnalysis/storical/src/switchLocation.m @@ -0,0 +1,48 @@ +function [coordinates] = switchLocation(location) +% switchLocation - function that assign coordinates to the selected location +% +% INPUT: +% location, char: location of the launchsite +% +% OUTPUT: +% coordinates, struct: coordinates of the launchsite + +arguments + location char +end + +switch location + case 'roccaraso' + % rampa nord + coordinates.latNord = 41.810833; % 41° 48' 39.0" N + coordinates.lonNord = 14.055278; % 14° 03' 19.0" E + % rifugio heidi + coordinates.latHeidi = 41.8100314; + coordinates.lonHeidi = 14.0528315; + % lunchpad + coordinates.latLaunch = 41.8084579; + coordinates.lonLaunch = 14.0546408; + % station + coordinates.latStation = 41.792618; + coordinates.lonStation = 14.086956; + + % geolimits for plots + coordinates.latLimits = [41.79, 41.82]; + coordinates.lonLimits = [14.05, 14.09]; + + [coordinates.arclen,~] = distance(coordinates.latLaunch, coordinates.lonLaunch, ... + coordinates.latStation, coordinates.lonStation); + + case 'euroc' + coordinates.latLaunch = 39.388727; + coordinates.lonLaunch = -8.287842; + + % geolimits for plots + coordinates.latLimits = [39.37, 39.395]; + coordinates.lonLimits = [-8.29, -8.28]; + otherwise + error('Location not defined') + +end +end + diff --git a/utilities/forecastAnalysis/storical/storicalAnalysisConfig.m b/utilities/forecastAnalysis/storical/storicalAnalysisConfig.m new file mode 100644 index 0000000000000000000000000000000000000000..a10b4f892c7ad9501091daf4aa63cdb92981f0d8 --- /dev/null +++ b/utilities/forecastAnalysis/storical/storicalAnalysisConfig.m @@ -0,0 +1,23 @@ +% mainStabilityAnalysis - Script to setup years, flags and location +% +% Copyright © 2025, Skyward Experimental Rocketry, AFD department +% All rights reserved + +%% settings +settings.windModel = 'ECMWF IFS'; + +% location MUST be 'roccaraso' or 'euroc' +settings.location = 'roccaraso'; + +% year data +settings.yearBegin = 2017; +settings.yearEnd = 2024; +settings.startIterator = 2016; + +% flags +settings.flag.ifGeoplots = true; +settings.flag.ifBarChart = true; +settings.flag.ifCompass = true; +settings.flag.ifGaussianDistribution = true; +settings.flag.ifPlots = true; +settings.flag.ifPrints = true; \ No newline at end of file